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AtlSTHACT: Central to the understanding of problems in water quality and quantity for effective mandgement of 
water resources is the development of accurate numerical models to simulate aspects of hydrology and contam- 
inant transfer. Several important difficulties arising in modeling of subsurface flow are discussed and promising 
numerical procedures for alleviating these problems are presented. Mixed finite element techniques for accu- 
rately approximating fluid velocities are described, and comQutational results on a variety of hydrology prob- 
lems are presented. 

, 

I INTRODUCTION 

In the past decade, water quality problems have 
assumed increasing importance in water resources 
engineering. An emerging awareness that our 
groundwater supplies face the threat of contamina- 
tion from various sources has prompted vigorous 
research into mathematical methods for predicting 
contaminant movements in underground water. In 
many respects the task of simulating contaminant 
flows in porous media is computationally more de- 
manding than the mote traditional problem of resolv- 
ing supply issues. The fundamental reason for this 
increased difficulty is that in contaminant flows the 
fluid velocity plays a crucial role, while water supply 
problems more typically concern a scalar field such 
as head or pressure. According to  Darcy's law, one 
must differentiate heads or pressures to get veloci- 
ties, and this lea& to at least two related mathema- 
tical problems. First, any pathological behavior in 
pressure or head manifests itself in even more severe 
behavior in velocity. Thus, for example, the rela- 
tively mild bgar i th ic  singularities in pressure or 
head that occur at pumped wells appear as simple 
poles in the velocity field. Second, standard nwneri- 
cal solutions of the flow equations comronly produce 
discrete approximations to  the pressure or head, and 
in differentiating these approximatiom to compute 
velocities one incurs a loss of accuracy that is typi- 
cally one order in the spatial grid mesh. 

These difficulties are significant, for they can lea4 
in the first case, to nonconvergent approximations to 
velocities near welb an4 in the second case, to infe- 
rior predictions of the very aspect of groundwater 
motion that i s  m t  crucial in forecasting contami- 
nant transport. In this paper we examine a mixed 
finite-element method for the groundwater flow 
equations that mitigates these difficulties. The 
essential idea of the mixed method is  that, by solving 

the second-order equation governing groundwater 
flow as a set of coupled first-order equations in ve- 
locity and pressure, one can compute both fields 
without sacrificing accuracy in the velocity through 
differentiation. The method also admits natural 
choices of interpolating polynomials for the trial 
functions. Furthermore, in problems involvinl; 
pumped wells one can incorporate appropriate singu- 
larities in the trial functions for velocity. The sinyu- 
lar parts, being known, then contribute to the inho- 
mogeneorrr terms in the systems of algebraic equd- 
t ions that arise through spatial discretization. This 
approach circumvents convergence difficulties near 
wells and leads to g d  global error estimates. 

2 REVIEW OF THE MIXED METHOD 

Let us examine a model equation arising in the sirtiu- 
lation of steady-state flow in a two-dimensional, 
horizontal, leaky aquifer. This type of problem i s  
representative of the sorts of flow equations that 
need to be solved in conjunction with species trans- 
port equations in groundwater contamination studies. 
The governing equation is  

where h is the unknown head in the aquifer, T i s  
the transmissivity, K i s  the hydraulic conductivity in 
the aquitard overlying the leaky aquifer, b i s  the 
thickness of the aquitard, ha is the head in the aqui- 
tard, and Q represents internal sources or sinhs. I f  
the sources or sinks are all wells, then we can ideal- 
ize them as points: 

K ( I )  V* (TVh) -%(h -h , )+Q = 0 

1 

kl 
Q =  Q l a ( x -  x t )  

In Proceedings of the International 
Numerical Methods in Engineering Theory and Applications, January 7-11, 
1985, Swansea, U . K . ,  ed. by 0. C. Zienkiewicz et al. 

Series on Advances in 



Here QL stands for the strength of the 1-th 
source (negative for producing wells), and 6(x - 
is the Dirac distribution centered at spatial position 
x . The leakage term in (1) has the linear form pro- 
p&ed by Charbeneau and Street (1979). 

In  the mixed finite-element method we factor 
Darcy's law from Equation (l), giving a coupled set 
of first-order equations: 

x&)  

where u is the superficial or Darcy velocity of the 
water. In typical boundary-value problems we solve 
Equations (2) on a bounded open set P c R2 subject 
t o  data of the form 

Thus the orientable boundary aP, having unit Out- 

ward normal vector u, admits a decomposition 
anN u a P D  into no-flow and prescribed-head seg- 
ments. anN i s  a locos of points where normal fluid 
velocities vanish, while anD i s  the boundary seg- 
ment along which heads are known. 

The boundary-value problem formed by Equations 
(2) and (3) has a variational form that underlies the 
finite-element approximations. Let L2(n) be the 
space of square-integrable functions on Q, and 
&fine the trial spaces: 

v - c v  e L ~ ( P ) x L ~ ( Q )  I v v  E L ~ ( Q )  
and V-u = O  on ao,) 

being the space of vector-valued velocity trial func- 
tions, and 

w = t W d ( c i ) I w = h ,  on anD) 

being the space of trial functions for the head. The 
variational version of our boundary-value problem is  
a set of integral equations obtained wing the inner 
products (f,g) - I, f g  dv and (f,g) = I, fog dv: 
we seek u € V  and h €  W such that 

(T-lu + oh ,  v) = 0 

(h - ha) + Q , W) = 0 

for all v € V  
K 

(-OW - for all w € W . 
Integrating by parts and observing the boundary 
values of the trial functions gives 

= - hv-u cb for all v G V  

K 
a Q  D 

(4b) (Ow , w) + ( 7; h ,  w) 
= ( 5 h a + Q , w )  K fo ra l l  w € W .  

Fini te-element approximations to  the boundary 
value problem given in Equations (2) and (3)  are ana- 
logs of Equations (4) posed on finite-dimensional sub- 
spaces Vk and Wk of the trial spaces V and W. 

In particular, we choose subpaces of piecewise poly- 
nomial interpolating functions on 0 .  The index k 
therefore indicates the mesh of partitions for finite- 
element interpolation. 

To define the specific subspaces used in this paper, 
we need to introduce some notation. For simplicity 
let us choose 0 t o  be a rectangle, Q = 1 x I ,  where 
I = (a,b) and I = (c,d) are open intervals in x 
and y, respectively. Consider partitions A ~ :  J = 
xo < --- < xM = b and Ay: t = yo < --- < yN = d 
of I and J having mesh: 

We define the piecewise polynomial space M' on a 
given partition A of any interval S t o  be the space 
of q-times continuously differentiable functions 
that, when restricted to a single interval in the parti- 
tion, reduce to  polynomials of degree not greater 
than p: 

4 

M:(A) = { #  € Cq 1 JI is a polyncmial of degree 
at most p on each subinterval of A 1  

0 
Thus, for example, Mml is a space of piecewise con- 
stant functions that may be discontinuous between 

subintervals, while Mo is a space of continuous, 
piecewise linear functions. 

For our trial spaces, we choose tensor-product 
Raviart-Thomas (1977) subspaces on the rectangle 
I x 1. In the lowest-degree case, we pick 

1 

In this case our trial function for the head h will tx! 
piecewise constant in the x and y directions. The 
trial function for velocity u wil l have two coinpo- 
nents: the x-component wil l be piecewise linear 
and continuous in the x direction and piecewibr 
constant in the y direction, while the y-component 
wil l be piecewise constant in x and piecewise linedr 
in y. For the next highest degree of approxirnation 
we choose 



Having chosen our trial spaces, we derive finite- 
element analogs of EquatiFs (4) by forming trial 
functions fik € Wk and \ E Vk whose values at 
the nodes (xi,yj) of the partition Ax x 4, are un- 
known. To solve for these unknown coefficients, we 
impose the Galerkin criteria: 

In  problems having pumped wells in Q we modify 
the trial function for the velocity t o  accommodate 
',he singularities at the wells. Hence we decompose 

into a regular part and a singular part: $ = + 3. Since we know the strengths, locations, and local 
forms of the singularities, we can write 

L 

and therefore treat & as known. In  this case 
Equations (5) become 

(6a) (T-lGr I vk) - (hk # v'vk) 

for all vk 6 V k  
and 

Evaluating the integrals appearing in these equations 
leads t o  a set of linear algebraic equations in the un- 
known nodal coefficients of û r and fie 

3 THEORY 

As mentioned earlier, the class of methods just des- 
cribed has two advantages over traditional finite- 
element formulations: they retain high-order accu- 
racy in the velocities obviating differentiation, 
and they eliminate convergence difficulties through 
the subtraction of singularities from trial functions. 
These advantages have their bases in theoretical 
error estimates. For the more traditional, straight- 
forward projections of the variational analog of 
Equation (1) Onto interpolating subpaces, fluid velo- 
cities must be computed from heads as u = -TVh. 
Standard approximation theory (Prenter, 1975) re- 
veals that a method furnishing O(kr) approximations 

to h yields approximations to Oh that are only 
O(kr'l) as k + 0. Thus improvements in the accu- 
racy of u require greater refinement of the finite- 
element partiton than comparable improvements in 
the accuracy of h. In contrast, the mixed method 
suffers no such disparity. Douglas, Ewing, and 
Wheeler (1983) show that, in regions where the 
source term Q i s  smooth, the mixed method using 
the first- and second-order trial spaces described 
above has global error bounds of the form 

and 

respectively, where M1, MZ' M3, M4 are constants 

for a given boundary value problem and 11 \ I 2  
signifies the norm associated with the inner product 
( 0 ; ) .  Thus refining the spatial partition in the mixed 
method yields conparable improvements in both heads 
and velocities. 

These error estimates have implications for prob- 
lems involving nonhomogeneous media. In  standdrd 
formulations with spatially heterogmeous transrnis- 
sivities the calculation u = -TVh calls for the mul- 
tiplication of a function, T, that may be rapidly vary- 
ing for physical reasons, with another, Oh, that may 
vary rapidly simply by virtue of i t s  being the gradient 
of a spatially varying approximation. Such a product 
of rapidly varying functions may be quite poorly 
behaved in numerical models. The mixed method 
avoids the numerical noise associated with differenti- 
ation of heads and therefore dws not compound phy- 
sical fluctuations with artificial ones. 

Douglas et al. also give theoretical justification 
to the subtraction of singularities. I n  this case both 
the first- and second-order schemes give global error 
estimates of the form 

11; - ul12 L M5 k Iog(k'l) 

116 - h(12 5 Mb k log(k" 1 

where, again, M5 and M6 are constants for a given 
boundary-value problem. These estimates ensure 
that the velocities predicted by the mixed method 
will converge to  the exact velocities near pumped 
wells when the trial function u^ explicitly incorpo- 
rates simple poles at the wells. 

4 COMPUTATIONAL EXAMPLE 

To illustrate the effectiveness of the mixed method 
we shall examine a simple numerical example. Con- 
sider the equation 

V2h - (h - 1) + Q = 0 



on 0 = (0,l) x (0,l) with l) 6 ( x  - ( 1 , l ) )  and 
U=Y = 0 on an. We shall examine various pressure 
and velocity solutions for this boundary-value prob- 
lem. 

Before discussing the numerical results, however, it 
i s  worth reviewing our choice of bases for the trial 
spaces Vk and Wk. For convenience let us tenpo- 
rarily use the variable z to stand for either x or 
y, let the partition in the z-direction be A,:  zn < 

< z h 8  and call AzX = zA - zA-l, A = 1 ,...,A. 
... 
Define the functions { vy 1 :Ll as follows. I f  y 

i s  even, vy is  the standard piecewise linear chapeau 
function having v ( z  ) = b Y B .  I f  y is  odd, say 
y = 2X - 1, then is  the piecewise quadratic 
given by 

vy 

1 2 A  Now take M , l ( A , )  = span (vY 1 y=l  . To get a 

basis for Mo(AZ) define the func- 

tions wAO,wA1 A A  as follows: 

2 

a1 

U , otherwise 

0, otherwise 

where a,,a2 are the Gauss points (1 d 3  -')/2 
in the unit interval (0,l). Then M i  = 

A 
span { wxO,wL1 \ . W i t h  these definitions, we 
can form tensor-product bases for the spaces Wk 
and Vk introduced in Section 2. 

Using these bases we can compute the matrix equa- 
tion representing the discrete Calerkin approximation 
to the model problem. It happens that, while the 
matrix i s  sparse, positive-definite, and invertible, it is 
not particularly well conditioned. Ewing and Koebbe 
(1984) describe an application of preconditioned con- 
jugate-gradient techniques t o  overcome the poor 
conditioning and speed the iterative solution of the 
linear system. 

Figure 1 shows the pressure or head distribution 
over 0 computed using the lowest degree (first- 
order) elements on a square grid having 32 elements 
on a side. Figure 2 shows the corresponding field for 
the x-component of water velocity. These solutions 
exhibit a logarithmic drawdown in head near the pro- 
ducing well together with a concomitant pole in ux. 
Figures 3 and 4 show the head and x-velocity distri- 
butions computed for the same problem 

F i g .  1 .  Head d i s t r i b u t i o n  computed 
u s i n g  f i r s t - o r d e r  e l e m e n t s  on n srluiri .  
g r i d  hav ing  32 e l e m e n t s  on n side. 

Y 
F i g .  2 .  x - v e l o c i t y  d i s t r i b u t i o n  
computed using f i r s t - o r d e r  elenents 
on n square g r i d  h a v i n g  32 cler.ients 
on a s i d e .  



f 

I 

0.0 

Fig. 3. Head d i s t r i b u t i o n  computed 
using second-order elements on a 
square grid h a v i n g  16 elements on a 
side. 

Figure 4 .  x-velocity distribution 
coniputed u s i n p  second-order elements 
on a square grid having 16 elements . 
on a s i d e .  

using the second-order t r ia l  space on a square grid 
having 16 elements on a side. Since the second- 
order method requires approxirriately twice as riiany 
degrees of freedom per element in each coordinate 
direction, the number of nodal unknowns needed to  
generate Figures 3 and 4 is  comparable to the nuinbcr 
needed in Figures 1 and 2. The two pairs of plots ..ire 
quite similar, as one might expect considertrig the 
parity in computational effort between the two 
cases. 

The method also performs well in problems w i th  
heterogeneous medium properties. Figure 5 ,  for 
example, shows the x-velocity distribution that res- 
ults when we use first-order elements dnd impuse J 

nonuniform transrnissivity having the form 

Thus 1 suffers a jump discontinuity along a line rlrii- 
ning diagonally through n into the wellbore. The 
x-velocity away from the wellbore therefore rrriiaiiis 
small for y < x but increases rapidly toward the 
wellbore near the edge of the domain where y = 1. 

Fiz. 5. x-velocity distribution 
computed using first-order e l c -  
nents on a problem in u!iicli t h e  
transmissivity has a disconti- 
nuity along y 5 ::. 



Figure 6 illustrates the x-velocity that results from 
using second-order elements and a discontinuous 
aquitard head ha of the form 

The contour plot of ux in Figure 7 shows nmre 
clearly the radial flow dominant near the well and 
the ‘ridgeline’ pattern prevailing away from the 
well. White heterogeneities of the form given in 
Equations (7) and (8) are highly idealized, they pro- 
vide simple yet relatively strenuous tests of the 
mixed method’s ability t o  model problem with nonun- 
iform material properties. 

U 

Y 

Fig. 6. x - v e l o c i t y  d i s t r i b u t i o n  
computed us ing  second-order ele- 
ments on a problem where the 
a q u i t a r d  head h has a d i s c o n t i -  
n u i t y  along x Sa9.5.  

Fig. 7. Contour p l o t  of x-ve loc i -  
t i e s  shown i n  F igu re  6. 

5 CONCLUSIONS 

We have seen that the mixed finite-element method 
is an attractive approach for solving groundwater 
flow equations, especially in contaminant transport 
problem where accurate water velocities are para- 
mount. The method gives velocities thdt have the 
same order of accuracy as heads, affording rapd  
error reductions on grid refinement co-ared with 
the traditional finite-element approach. Further 
advantages accrue through the explicit incorpordtiori 
of source and sink ringularities in the trial functions 
for velocity. Here the iwrovement over traditional 
discrete methods i s  more dramatic: the mixed 
method with subtracted singularities converges dt 
wells, while traditional schemes do not. Finally, the 
mixed method gives good numerical results even in 
problem with rather severe heterogeneities in 
medium properties. 
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