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WHY UPWINDING IS REASONABLE 

Myron B. Allen 

University of Wyoming 

INTRODUCTION 

Upwind-biased discrete approximations have a distinguished history in numeri- 
cal fluid mechanics, dating at least t o  von Neumann and Ririitinyer (1950). 
Lately, however, upwinding has come under f ire in water resources engineering. 
Among the most effective critics of upwind techniques are Gresho and Lee 
(1980), who take umbrage at the smearing of steep gradients in solutions of 
partial differential equations. While this viewpbint has cogency, a blanket con- 
demnation of upwinding would be injudicious. There exist fluid flows for which 
upstream-biased discretizations are not only valid but in fact mathematically 
more appropriate than central approximations having higher-order accuracy. 

Figures 1 and 2 illustrate the source of the controversy. Both plots show 
numerical solutions to  a convection-dominated species transport equation using 
finite-element collocation. figure 1, the result of a centered scheme, shows a 
solution having unrealistic wiggles near the concentration front; Figure 2, from 
an upwind scheme, exhibits nonphysical smearing. The wiggles in the centered 
scheme disappear altogether when the spatial step Ax is small enough, where- 
as the smearing associated with upstream weighting decreases continuously 
with Cresho and Lee argue that the wiggles indicate an inappropriate 
spatial grid and that suppressing them via upwinding eliminates useful symptm 
in favor of a less informative flaw, smearing. 

Ax. 

Were wiggles the only difficulty with centered schemes, proscribing upwind 
methods might be in order. However, as we shall see, for certain types of 
equations centered schemes can fai l  t o  converge. This difficulty is not sympto- 
matic of an unsuitable grid; rather, it betrays an inability of centered schemes 
t o  impose proper uniqueness criteria. For such equations, upwinding can be 
reasonable. 

SOME UPWINDING TECHNIQUES 

Of various discrete methods used in numerical fluid mechanics, finite differ- 
ences, Galerkin methods, and finite-element collocation have proved to be 
among the most attractive. A brief review of techniques in each of these 
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Figure 1. Solution to the convection-diffusion 
equation using standard collocation 
on finite elements. 
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Figure 2. Solutions to the convection-diffusion 
equation using several choices of 
upstream collocation points. 



make matters concrete, consider as a paradigm of convection-dominated flows 
the constant-coeff icient convection-diffusion problem 

where x and t are dimensionless space and time coordinates, u(x,t) denotes 
a normalized concentration, and the Peclet number Pe measures the degree to 
which convection dominates diffusion. 

As commonly implemented, each of the discrete interior methods calls for a 
partition h: 0 = xo < x i  < ... < XN+1 = 1 of the spatial domain. Suppose 
for simplicity that AN has uniform mesh Ax. Then the following finite- 
difference analog of Equation (1) has truncation error O(Ax2): 

where ui(t) signifies the approximate solution at x = i A x  and time t. The 
problem with Equation (2) is  that, unless A x  is  sufficiently small, the numeri- 
cal solution exhibits spurious wiggles near sharp concentration fronts. A desire 
to avoid these wiggles in favor of smearing prompts many analysts to resort to 
upwind schemes. 

The simplest way to  derive an upwind scheme from Equation (2) i s  to 
replace the analog of the convective term au/ax by a one-sided difference, 
yielding 

The truncation error of Equation (3),  O( Ax), i s  larger than that for Equation (2), 
and writing the lowest error term explicitly shows 

where the terms on the right are evaluated a t  It is clear that the 
upwind difference scheme augments physical diffusion by an amount propor- 
tional to  Ax. Hence by sacrificing one order of spatial accuracy one can sup- 
press nonphysical wiggles at  the cost of numerically induced dissipation. 

x = xi. 

Upwinding techniques also exist for finite-element Galerkin schemes. One 
such technique is  the use of upstream-biased test functions proposed by Hein- 
rich et al. (1977). Consider the standard Calerkin method applied to  Equation 
(1). This method seeks a trial function 

N 

i=l 
u^(x,t) = u ~ ( x )  + C Ui(t)Li(x) 

approximating the true solution u(x,t). Here u (x) is a chapeau function on 
AN satisfying the boundary conditions and vanishing at each interior node Xi, 

i = l,...,N, and the functions Li(x) are elements of the chapeau basis on 4. 
a 



To determine the nodal values ui(t), we force the residual aC;/at + a;/ax - Pe'l $Ci/ax2 to  be orthogonal to  each basis function Lj(X), j = l,...,N, with 
respect to the inner product <f,g> = /if(x)g(x)dx. This requirement leads to 
a set of N ordinary differential equations for the ui(t): 

N 
C (<L. L.> dui/dt + <L-' L->ui + Pe'l<Li',Lj'>ui) = 0, j = l,...,N 

i=l 
(5) 1' I 1 '  I 

Computing the integrals then gives 

Equation (6) i s  similar to  the centered difference formula, Equation (3), the 
only difference being a peculiar spatial average of time derivatives in Equation 
(6). This scheme, like Equation (3), produces wiggles when A x  is  too large. 

The method advanced by Heinrich et al. modifies Equation (5) by replacing 
the test functions in the convective term with asymmetric functions Lj*(x) = 
Lj(x) + crAj(X), where 

and a > 0. Thus the integral <Li',Lj*> appears in Equation (5) instead of 
<Li',Lj>, and the upstream-weighted Calerkin scheme differs from Equation (6) 

cC<Li',Aj>. Simple calculation shows 

- 1/2, i = j + l  
1, i = j  

so the scheme proposed Heinrich et al. reduces to  

Therefore in a manner analogous to Equation (3),  Equation (7) augments physi- 
cal diffusion by an amount proportional to Ax, and this numerical dissipation 
mitigates wiggles at  the expense of smearing. 

Shapiro and Pinder (1981) introduce a related upwinding technique for use 
with finite-element collocation. Their approach entails the use of Hermite 
cubic interpolating bases (see Prenter, 1975, Chapter 3), except they perturb 
the trial function in the convective term by a piecewise quartic biased in the 
upstream direction. Shapiro and Pinder present a detailed Fourier analysis 
showing the dissipative effects of their upstream weighting on the propagation 
of sharp fronts. 

I 



There is  another upwinding technique for fintri-element ( 1  dicxdtion. Con- 
sider the standard implementation, in whiLh the tr ial  function hcls the form 

N 

i=l 
Ci(x,t) = u,(x) + C [ui(t)Hgi(X) + ui ' ( t)Hl i(x)] 

Here the coefficients ui(t), ui'(t) a proximate the nodal values U(Xi,t), 

au(xi,t)/ax, respectively, and (HOi,H1 if:: is  the basis for Hermite cubic in- 
terpolation on AN. The standard collocation method, which has truncation 
error O(Ax4), requires the residual to vanish, 

at each of 2N 
Figure 1 shows, unless 
near sharp fronts (Jensen and Finlayson, 1980). 

collocation points 
Ax 

iik = X i  + Ax/2 f Axfi, i = l,...,N. As 
is sufficiently small the scheme generates wiggles 

A technique called upstream collocation (Allen and Pinder, 1983) offers a 
simple remedy t o  the wiggles, at the usual cost of smearing as shown in Figure 
2. To implement the technique, simply shift the collocation points i k  in the 
convective term of Equation (8) t o  upstream points xk* = <k - <Ax. This gives 

in which the differentiated basis-function values Hmi'(rik*) appear in the con- 
vective term instead of Hmi'(Ek). By Taylor's theorem, the difference 
between these two values is  -<Ax H,i''(Tik) + ( 32h2/2)Hmj"'(&). Thus, t o  
within O(Ax2), Equation 9 is equivalent to 

It is clear from this equation that numerical diffusion is again the mechanism 
by which the scheme mitigates wiggles. 

Upstream collocation is  closely related to  an upwind Calerkin scheme in- 
troduced by Hughes (1978). This latter scheme involves numerical evaluation 
of the Calerkin integrals using quadrature points shifted upstream from the 
Gauss points. I n  fact, one can show an algebraic correspondence between up- 
stream collocation and a variant of Hughes' method using reduced integration 
on Hermite tr ial  spaces (Allen, to appear). 

A NONLINEAR HYPERBOLIC EQUATION 

Numerical dissipation makes upwinding attractive t o  modelers wishing to  avoid 
wiggles in convection-dominated parabolic flows. It i s  precisely such motives 
that provoke justified ire in Cresho and Lee. There is, nevertheless, another 
motive for using upwind-biased schemes. Many physical systems combine 
minute dissipation with nonlinearity, obeying governing equations that are 
effectively hyperbolic. For these systems high-order discrete schemes may be 
mathematically inappropriate, not because they generate wiggles, but because 



18 

they fail to converge. Upwinding techniques then provide reasonable alterna- 
tives. 

The Buckley-Leverett problem furnishes a simple example of a nonlinear 
hyperbolic equation for which high-order approximations fail. Consider a typi- 
cal Cauchy problem for this equation: 

Here S stands for water saturation; f(S) is  a nonconvex, monotonically in- 
creasing function giving the flux of s; and Sor and Swr are the minimum 
oil and water saturations, respectively, for the rock-f luid mixture. Equation 
(11) models immiscible flows in porous media in which capillarity exerts a neg- 
ligible influence on fluid velocities. A prime feature of Equation ( 1 7 )  is the 
propagation of a saturation shock through the porous medium. This problem 
serves as a prototype for many kinds of nonlinear, hyperbolic or nearly hyper- 
bolic systems of flow equations that occur in applications where convective 
forces are dominant. 

It is  widely known that spatially centered approximations to  Equation (11) 
can converge t o  incorrect solutions. Allen and Pinder (1983), for example, 
examine the finite-element collocation approximation t o  this problem using 
both the conventional formulation and the upstream collocation scheme dis- 
cussed above. As Figures 3 and 4 show, the conventional method predicts a 
saturation shock that is  too s l o w  and too strong, whereas the upstream method 
gives good approximations t o  the true shock. No amount of grid refinement 
can correct the failure of the conventional scheme. The difficulty here is not 
one of spurious wiggles; it i s  a deeper problem concerning the suitability of 
numerical methods from a mathematical standpoint. 

Others have reported results similar to those displayed in Figures 3 and 4. 
Huyakorn and Pinder (1978) use the upstream-weighted Calerkin scheme re- 
viewed above to  overcome convergence difficulties with the standard Galerkin 
method in solving Equation (11). Mercer and Faust (1977) accomplish the same 
end by adding an adjustable capillary term t o  the discrete equations. Shapiro 
and Pinder (1980) use their upstream-weighted collocation method to  produce 
convergent solutions to Equation (11). Indeed, upstream weighting has become 
standard practice for immiscible flow modeling in the oil industry (Ariz and 
Settari, 1979, Chapter 5). 

UNIQUENESS AND HYPERBOLIC CONSERVATION LAWS 

To see why upwind schemes converge for the Buckley-Leverett equation and 
similar problems, it i s  useful t o  review some mathematical facts about Equation 
(11). This equation is a quasilinear hyperbolic conservation law. When such 
equations have nonconvex flux functions like f(S), one cannot expect Cauchy 
problems for the equations t o  possess classical solutions. Instead, one may 
have to  settle for weak solutions, defined for Equation (11) by the integral cri- 
terion 
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Figure 3. Solution to the Buckley-Leverett prr? 1 P m  using 
standard collocation on finite elements. 
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Figure 4.  Solutions to the Buckley-Leverett problem 
using upstream collocation with spatial 
grids of varying mesh. 



for any Cm 
rion reduces to  Equation (11) when S(x,t) 
also admits solutions S(x,t) having shocks. 

real-valued function +(x,t) with compact support. This crite- 
is continuously differentiable but 

However, Cauchy problems like Equation (11) may not have unique weak 
solutions. To guarantee uniqueness for general initial data requires an addi- 
tional constraint. The correct constraint, or shock condition, requires the weak 
solution to  depend continuously and stably on the initial data. Equivalently, 
characteristic curves emanating from both sides of a discontinuity must inter- 
sect the curve on which the initial data are given. Oleinik (1963) proves a 
uniqueness condition on weak solutions that is  mathematically equivalent to the 
shock condition but has more immediate irnplications for discrete approxima- 
tions. Her criterion essentially states that the solution to  the hyperbolic equa- 
tion must be the limit of solutions, for comparable data, to  a parabolic equation 
differing from the hyperbolic one by a dissipative second-order term of vanish- 
ing influence. In  gas dynamics, this second-order term is called 'vanishing vis- 
cosity'; for the Buckley-Leverett problem the term 'vanishing capillarity' is 
perhaps more appropriate. 

High-order, spatially centered discretizations of the Buckley-Leverett 
problem, though formally consistent with Equation ( l l ) ,  yield approximate weak 
solutions that are physically and mathematically incorrect. From a physical 
standpoint the neglected capillary term in Equation ( l l ) ,  which has the form 

exerts an important influence in a microscopic region of what appears to mac- 
roscopic observers as a saturation shock. Thus while the global effects of cap- 
illarity may be legitimately neglected in the macroscopic flow equation, some 
device must remain to  guarantee that the solution S(x,t) respect the micro- 
scopic physics. Artificial capillarity i s  such a device. 

It is a relatively simple matter to  see how various upwinded approximations 
contribute artificial capillarity. For example, an upstream-weighted difference 
approximation to  Equation (11) that i s  analogous to  Equation (3) yields a flux 
term that has the form 

AX-'(fi - fi-l) = - I -  AX/^) fi I. + 0(Ax2) 
ax i ax2 I 

Since f'(S) LO, it i s  clear that the lowest error term here mimics the missing 
physical capillarity of E c p t i m  (12), while p r w v i w  consistency. 

Similarly, the use of upstream-biased test functions in the Calerkin scheme 
analogous to  Equation (7) yields approximations to  the flux term of Equatim 

I 



(11) having an error N h 

where f j  = f($(t)) and 5 h the tr ial  fmct ion approximating S. Notice 
that, parolklling Equation (13), the use of o s y m t r i c  test functions adds a 
numerical capi lhri ty that h O(Ax) smaller than the approximations t o  physical 
t e r m  in Equation (ll), 

U p t r c r n  c d b c a t h  a h  a& artificial capillarity t o  the Buckky- 
l c v e r t t t  problem. In this case w t  project the flux tcrp of Equation (11) t o  a 
Hcdtc interpobtirrq space and c d k a t c  the result af/ax at pwrpls i h * =  
% - <Ax vptrum d the usual collocation paints. A Taylor cxpammn shows 
- 

Again, the upwind scheme adds the necessary artificial dissipation in the form 
of a 'vanishing capillarity.' 

Various physics give rise t o  effectively hyperbolic systems for which 
uniqueness of weak solutions is  an important issue. For such systems formal 
neglect of dissipation, while arguably valid from an engineering viewpoint, ne- 
cessitates a device like upwinding to  guarantee qualitatively correct numerical 
solutions, Other examples of interest in water resources engineering include 
hydraulic jumps (Whitham, 1974, Chapter 13) and wetting fronts in variably 
saturated soils (Nakano, 1980). 

CON CLU 5 ION S 

Upwinding can serve two purposes: it can suppress wiggles or, for certain 
equations, it can guarantee convergence. As Cresho and Lee observe, the first 
purpose i s  largely cosmetic, and the attendant smearing may be a more difficult 
flaw t o  recognize than spurious oscillations. However, in the case of conserva- 
tion laws with discontinuous weak solutions upwinding can be a legitimate 
practice. The aim in this second case is t o  formulate consistent approximations 
that have built-in mechanisms for accommodating the peculiarities of hyper- 
bolic or nearly hyperbolic flows. The lower spatial accuracy inherent in upwind 
schemes is  far preferable t o  the convergence failures of higher-order schemes. 
indeed, in the neighborhood of a discontinuity the very notion of 'order of 
accuracy' can be problematic. 

Despite the mathematical validity of upwinding, the problem of smearing 
remains. While numerical dissipation vanishes with Ax, in practice Ax never 
vanishes and may be so large that artificial smearing i s  unacceptable. One of 
the most promising remedies t o  this difficulty is  adaptive local grid refinement. 
Here one uses a spatial grid having smaller elements in portions of the flow 
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field where steep solution gradients drive numerical dissipation. Algorithms 
combining local grid refinement with upwinding allow both for convergence to  
correct weak solutions and for the reduction of artificial smearing near sharp 
fronts. There i s  no denying the formidable coding difficulties in adaptive local 
grid refinement; however, progress in this field i s  encouraging (see Ewing, t o  
appear). 
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