DISTRIBUTION OF DENITRIFYING AND SULFATE REDUCING BACTERIA WITHIN A RIPARIAN ZONE ALONG A MOUNTAIN STREAM

Quentin D. Skinner Associate Professor Range Management Division

John C. Adams Associate Professor Division of Microbiology and Veterinary Medicine

> Michael R. Hussey Graduate Student

College of Agriculture

October 5, 1984

Research Project Technical Completion Report (USGS G-879, Project Number 07)

Prepared for:

U.S. Department of the Interior U.S. Geological Survey

The research on which this report is based was financed in part by the United States Department of the Interior as authorized by the Water Research and Development Act of 1978 (P.L. 95-467).

Contents of this publication do not necessarily reflect the views and policies of the United States Department of the Interior, nor does mention of trade names or commercial products constitute their endorsement by the U.S. Government.

> Wyoming Water Research Center University of Wyoming Laramie, Wyoming

TABLE OF CONTENTS

Pag	<u>ze</u>
STATEMENT OF PURPOSE	1
OBJECTIVES	2
RELATED RESEARCH	3
METHODS AND PROCEDURES	5
Study Site	5
Sampling	7
Microbiology	7
Soil Physical Parameters	8
Statistical Analysis	8
RESULTS AND DISCUSSION	10
Nitrous Oxide Production	10
Denitrifying Bacteria	14
Sulfate-Reducing Bacteria	14
Total Heterotrophic Aerobic Bacteria	16
SUMMARY AND CONCLUSIONS	21
LITERATURE CITED	23
APPENDICES	
A. Formulas Applied During Analysis	29
B. Denitrification and the Measurement of N_2^0	
Production by Electron Capture Gas	33
C. Raw Data for Soil Microbiology of the North and South Side of Telephone Creek 1983	40

ii

•

D.	T-Test for Comparing Two Sample Means with Paired Observations for Statistical Verifications for Table 4, Comparison of Fresh and Frozen Soils	46
E.	Analysis of Variance Tables for the North Side Soils of Telephone Creek	48
F.	Analysis of Variance Tables for the South Side Soils of Telephone Creek	56

Page

•

LIST OF FIGURES

Figure		Page
B1.	Flask used to measure denitrification potential	37
B2.	Chromatogram resulting from injection of a standard	39
в3.	Chromatogram resulting from injection of a sample	39

•

LIST OF TABLES

<u>Table</u>		Page
1.	Mean daily precipitation, air temperature, and stream flow by month for Mill Pond gauging station, 1983	6
2.	Microbiological data obtained per g dry soil and soil physical properties for depths and plant communities (Telephone Creek, 1983)	11
3.	Microbiological data per g dry soil and physical properties for riparian plant communities by depths (Telephone Creek, 1983)	12
4.	Nitrous oxide production, heterotrophic aerobic bacteria and physical properties for fresh and frozen soil samples	13
5.	Correlation regression matrix for all soil microbial parameters and physical properties (north side Telephone Creek, 1983)	15
6.	Microbiological data obtained per g dry soil and soil physical properties for each transect (north side Telephone Creek, 1983)	17
7.	Microbiological data per g dry soil and physical properties for riparian vegetation communities (south side Telephone Creek, 1983)	19

y

ABSTRACT

The presence and activity of denitrifying bacteria as well as bacteria capable of reducing sulfate in one upland and five riparian soils of a mountain watershed in Wyoming were studied. Bacteria were enumerated from soil samples collected during summer along transects placed perpendicular to stream flow. Samples were taken at three depths within each plant community. Subsamples were frozen and later utilized to determine denitrification potential.

Higher counts of total heterotrophic aerobic bacteria, sulfate-reducing bacteria, denitrifying bacteria and denitrification potential existed in the upper 5 to 15 cm of soil than at 30 cm. Soils located close to the streams edge tended to have more bacterial activity than those further from the stream indicating that these soils may be important areas for nitrate and sulfate reduction. Soil organic matter and water content decreased with depth in all plant communities, and those closer to the stream contained more organic matter and water than those further from the stream.

STATEMENT OF PURPOSE

The purpose of this study was to document presence or absence of nitrate and sulfate reducing bacteria within riparian zones located in a mountain area of Wyoming. If present, the study was designed to see if numbers of bacteria varied with distance from the water table. Transect data were taken from stream edge to upland areas knowing that the water table would be further from the soil surface toward upland habitats. Upland habitat would therefore be supported by less soil water than moist and wet vegetation types near streams and lakes. In addition, variation in bacteria numbers present were correlated to soil depth, soil ph, and organic matter. Soil temperature was equivalent to stream water temperature and was discarded as a test parameter. Furthermore, soil temperature probes were not adequate to provide accurate data. Potential activity of organisms capable of reducing nitrate to nitrogen gas was evaluated by measuring the anaerobic by product, nitrous oxide, under laboratory conditions.

OBJECTIVES

The objectives of this study were to:

- Document the distribution of denitrifying and sulfate reducing bacteria in a mountain riparian zone.
- Correlate numbers of organisms to stream flow, water table, soil moisture, and soil organic matter.

RELATED RESEARCH

Riparian ecosystems are ecologically important vegetative communities (Odum 1978). Compared to upland vegetation types riparian zones in the Rocky Mountain States are relatively limited and often receive extensive user pressure by livestock, wildlife, and man (Busby 1978, Jahn 1978, Johnson 1978). These users are often accused of causing excessive damage to associated aquatic habitat, vegetation, and stream channel stability, which often causes a reduction of soil moisture, plant production, and species composition (Settergren 1977, Platts 1978, Haugen and Duff 1982). The riparian zones' location between upland and aquatic ecosystems represents a transition zone and consequently may be of particular importance in understanding the contribution of nutrients to nearby waters from the uplands (Kirbby 1978).

Numerous studies using vegetation, channel morphology, and sediment deposition show changes occurring in riparian zones due to livestock grazing (Cooper 1976, Duff and Cooper 1978, Robinson 1982, and Platts et al. 1983). Measurements of other authors have used bacteria indicative of fecal pollution for assessing ungulate grazing contribution to stream pollution (Morrison and Fair 1966, Skinner et al. 1974b, Bunkhouse and Gifford 1976, Speck 1981, Jawson et al. 1982, Skinner et al. 1984a). Bacteria other than those used to determine fecal contamination in streams also may be useful to predict user impact on riparian zones. Data from Skinner et al. (1984b) suggested denitrifying bacteria may be associated with stream bottom and bank areas in a mountain drainage basin. These bacteria varied significantly downstream between areas of depression storage. Bacteria capable of reducing sulfate were also present. It is possible these organisms may be entering stream flow from riparian zones through bank-stream interflow (Morrison and Fair 1966). The purpose of this study was to document: 1) denitrifying and sulfate-reducing bacterial numbers present in riparian plant communities, 2) differences in numbers of denitrifying and sulfate-reducing bacteria between different riparian and upland plant communities, 3) variation in numbers of these bacteria with soil depth, and 4) if denitrification potential varied between plant communities and soil depth.

Denitrifying bacteria, which are faculative anaerobes, and sulfate-reducing bacteria, which are strict anaerobes, are common in many soils and waters (Gamble et al. 1977, Knowles 1982, Pfennig and Widdel 1981, Postgate 1979, 1984). Bacterial denitrification has been positively correlated with soil moisture and organic matter (Wijler and Delwiche 1954, Cady and Bartholomew 1960, McGarity 1961, Mahendrappa and Smith 1967, Craswell and Martin 1974, Delwiche and Bryan 1976, Craswell 1978, Smith and Tiedje 1979a, 1979b, Patten et al. 1980, and Knowles 1981a, 1981b, 1982). Sulfate-reducing bacteria proliferate under anaerobic conditions in soils (ZoBell 1958, 1963, Peck 1962, Campbell and Postgate 1965, Bremner and Steele 1978, and Postgate 1959, 1979, 1984). Soil moisture is pertinent to maintaining riparian zones. Wet soils reduce soil oxygen content and should therefore provide a better environment for the bacterial reduction of nitrate and sulfate. The documentation of the presence, population dynamics, and potential for denitrifying bacteria may provide an additional way to monitor user impacts of riparian ecosystems.

METHODS AND PROCEDURES

<u>Study Site</u>: A 30 x 100 m study site was located along Telephone Creek approximately 40 m above a stream flow gauging station approximately 3170 m above sea level.

Telephone Creek is one of three main drainages within the Nash Fork Hydrologic Observatory of Southeastern Wyoming. The watershed is continuously monitored by the Wyoming Water Research Center (WWRC). Vegetation and drainage basin has been described by Skinner et al. (1974a). The area is typical of many high mountain watersheds in the Rocky Mountains. Monthly air temperature, precipitation, and stream flow at the site for 1983 are presented in Table 1.

The selected study area was occupied by three plant communities designated wet meadow, moist meadow, and upland. The wet and moist meadows, were considered representative of riparian soil types. The upland had shallower soils containing less organic matter and were brown in color compared to the dark organic rich riparian soils. In the wet meadow, Carex (<u>Carex</u> sp.) and Equisetum (<u>Equisetum</u> sp.) were dominant, whereas grasses were dominant in the moist meadow. Three transects, approximately 30 m apart were established within the study area. Each transact started at the edge of the low stream bank (Platts et al. 1983) and continued, perpendicular to the stream, upland through each vegetation zone. Once established total length along a straight line was determined for each transect. Sampling occurred at the center of each vegetative zone.

Month	Precipitation cm	Air Temperature °C	Stream flow L sec
Jan	.33	-12.66	22.36
Feb	.30	-12.33	9.91
Mar	.64	-9.72	15.00
Apr	.41	-7.94	9.91
May	.56	-0.17	87.73
June	.28	3.83	789.00
July	.23	8.77	581.00
Aug	.15	10.11	190.74
Sep	.33	4.39	68.49
Oct	.18	- 2.11	82.92
Nov	.25	- 7.33	87.73
Dec	.28	- 9.88	52.07

Table 1. Mean daily precipitation, air temperature, and stream flow by month for Mill Pond gauging station (WWRC 1983).

.

Sampling: Samples were collected on August 15, 16, and 17, and again on September 12, 13, and 14, 1983. Sampling depths from soil surface were 5, 15, and 30 cm. One transect (nine samples) was collected and processed on each sampling day. A soil core was removed and subsamples containing approximately 0.5 kg at appropriate depths were removed, placed in labeled "Ziploc Bags", iced, and transported to the laboratory for analysis. Subsamples (25 to 30 g, fresh weight) of each 0.5 kg sample were aseptically removed, weighed, and placed into sterile blenders containing 225 ml of chilled (6°C) sterilized distilled H₂O. Duplicate subsamples (10 to 20 g) of each 0.5 kg sample were then weighed and placed in soil drying cans for soil moisture determinations. Remaining soil from each 0.5 kg sample was frozen at -12° C for future analysis. The distilled water and soil was homogenized using a Waring commercial blender at low speed (18,500 rpm) for two minutes which yielded the highest bacterial counts in preliminary experiments. Serial 10 fold dilutions were made in 0.1% sterile peptone water (Straka and Stokes 1957). Processing was accomplished within 7 h of collection.

<u>Microbiology</u>: Heterotrophic aerobic bacterial counts were obtained on modified Henrici agar (Stark and McCoy 1938), via the procedure described by Skinner et al. (1974a). Denitrifying bacterial populations were estimated by the most probable number (MPN) method used by Skinner et al. (1974a) but were incubated for 14 days instead of 7. Nitrous oxide (N_2 0) production was measured using the methods of Swank and Caskey (1982) using thawed soils which had been frozen for two weeks. Nitrous oxide was measured using a Hewlett Packard 5730 A gas chromatograph GC equipped with a ⁶³Ni electron capture detector. Separation of N_2 0 was achieved using a 3 mm x 1.8 m Porapak Q 80/100 mesh (Supelco Inc.) column at 50°C. Carrier gas was 5% methane in argon (Ar) flowing at 60 ml per min. Detector temperature was 300°C and the injector temperature was 250°C. Injections were made with Hamilton (Hamilton Co., Reno, Nev.) microliter gas-tight syringes. Two certified gas standards (Scott Specialty Gases, Troy, Mi.) containing 99.61 ppm N_20 in Ar and 1069 ppm N_20 and 1012 ppm acetylene (C_2H_2) in Ar were used to prepare standard curves. Peak heights were used in quantitating amounts of N_20 produced from samples. Multiple injections from each sample were made and average values obtained. The amount of N_20 in the slurry was calculated and added to headspace N_20 using the procedure described by Tiedje (1982).

Sulfate-reducing bacterial populations were enumerated using methods described by Mara and Williams (1970).

<u>Soil Physical Parameters</u>: Soil water content, reported on a wet weight basis, was determined gravimetrically at 105° C for 24 h. All values reported for N₂O production and microbial population estimates are on a per g dry soil basis. Estimates of organic matter were obtained via loss-on-ignition (Davies 1974).

Soil pH was determined using a Perkin Elmer glass electrode pH meter following McLean's (1982) method as modified using a slurry containing 10 g air-dried soil and 50 ml of 0.01 M calcium chloride (CaCl) and was standardized using soils of known pH.

<u>Statistical Analysis</u>: Two-way analysis of variance (ANOVA) was used to describe differences in plant communities, depths, and dates of sampling for organic matter, H_2^0 content, pH, denitrifying bacteria, sulfate-reducing bacteria, heterotrophic aerobic bactera, and micrograms of N_2^0 produced (Steel and Torrie 1960). One way ANOVA was used to indicate differences in depth within each plant community for the above mentioned bacterial and soil parameters. Significant contrasts between means were separated using Duncan's New Multiple Range Test (Steel and Torrie 1960). All results were compared at a 95% probability level. Paired t tests were used for comparing fresh and frozen soil N_2^0 production. Regression analysis was performed to determine correlations between parameters.

RESULTS AND DISCUSSION

Overall, data indicates two general findings: 1) bacterial numbers, organic matter, and water content were higher in the upper 5 to 15 cm than at 30 cm; and 2) these parameters were higher in soils of the wet and moist meadows than in the upland soils (Table 2). No significant differences were noted between the August and September sampling dates for all parameters tested. Streamflow on August 15, 16, and 17 was 231.2, 212.8 and 182.8 L sec⁻¹ respectively, while September 12, 13, and 14 showed 64.5, 64.0 and 63.7 L sec⁻¹ (WWRC 1983). Less streamflow did not decrease soil moisture as expected. This is likely due to shallow riparian soils over a perennial watertable which is maintained near the soil surface season long. Increased precipitation in September may also have helped maintain soil moisture (Table 1).

<u>Nitrous Oxide Production</u>: Nitrous oxide production (Table 2) was significantly greater at 5 cm than at 15 or 30 cm. The moist meadow produced more N_2^0 than either the upland or wet meadow soils overall, this may be attributed to the rather large amount of N_2^0 produced at the 5 cm depth in the moist meadow (Table 3). Data in Table 2 was lumped by sampling date, vegetation community, and depth to determine what sampling scheme should be used to monitor riparian zones for bacteria capable of reducing nitrate and sulfate. Although this procedure is not statistically sound, number of samples for depth and plant communities increase. Trends shown in Table 3 follow those in Table 2.

		Lc	g Viable Ce	Soil Physical Properties				
Site	ug N ₂ 0 Produced	Denitifying Bacteria	Sulfate- Reducing Bacteria	Heterotrophic Aerobic	Organic Matter(%)	Water Content (% Wet)	рН	
Depth								
5 cm	¹ 1.88a	5.33a	4.59	7.07	19.96	43.82	4.99a	
15 cm	0.88	4.96ab	4.76	6.65	14.57	37.13	5.05a	
30 cm	0.11	4.09Ъ	3.03	6.77	7 . 36a	25.44a	5 . 28b	
Plant Communities								
Wet	0.87	5.12ab	4.96	7.08	21.68a	52.68a	5.22a	
Moist	1.69a	5.24a	3.82	6.75	15.04b	40.94Ъ	5.40a	
Upland	0.31b	3.98Ъ	2.58	6.65	5.17c	12.76c	4. 71b	

Table 2. Microbiological data obtained per g dry soil and soil physical properties for depths and plant communities. Telephone Creek study site.

¹Values with same letters or no letters indicate no significant differences at $\alpha = 0.05$, n = 18.

11

		W	et Meadow		1	Moist Mead	ow		Upland	
Parameters	Depths cm	Aug n-3	Sep n=3	Mean n=6	Aug n=3	Sept n=3	Mean n=6	Aug n=3	Sept n=3	Mean n=6
ug N ₂ O Produced	5.0	2.11	¹ 1.36	1.74a	3.62a	3.41	3.51a	0.62	0.13	0.38
2	15.0 30.0	0.68 0.13	0.78ab 0.16b	0.73ab 0.15b	1.08 0.13	1.83 0.09	1.46ab 0.11b	0.78 0.09	0.14 0.08	0.46 0.09
Log Denitrifying	5.0	5.42	5.20	5.32	5.66a	5.60	5.63a	4.03	3.43	3.83
Bacteria	15.0 30.0	4.67 4.36	5.46 4.33	5.22 4.35	4.37 3.90	5.21 3.18	4.97 3.68	4.22 4.27	3.93 3.14	4.10 4.00
Log Sulfate-	5.0	5.26	4.30	5.01	4.25	4.19	4.22a	2.78	2.39	2.63
Reducing Bacteria	15.0 30.0	4.25 3.17	5.50 3.54	5.23 3.40	3.45 2.53	3.48 2.86	3.46 2.73	2.76 2.38	2.60 2.35	2.69 2.37
Log Heterotrophic	5.0	7.20	6.99	7.11	7.09	7.17	7.13a	7.03a	6.83	6.94
Aerobic Bacteria	15.0 30.0	6.77 6.11	7.00	6.90 7.19	6.32 6.07	6.41 5.75	6.36 5.94	6.62 6.16	6.33 6.19	6.50 6.18
Estimate of	5.0	26.23	26.70	26.46	28.83a	26.06a	24.95a	8.63a	8.30a	8.47
Organic Matter %	15.0 30.0	28.37	21.46 14.77	24.92	13.46b 4.90c	15.70ab 6.26b	14.58b 5.58c	4.50ab 2.63b	3.93 3.70	4.22
Vater Content %	5.0	58.60	60.70	59.65	58.43a	54.73	56.58a	19.60	10.87	15.23
(wet weight)	15.0 30.0	56.37 39.77	57.33 43.33	56.85 41.66	42.70b 23.87c	42.93 24.00a	42.32b 23.93c	15.53 12.73	8.90 8.93	12.22 10.83
оН	5.0	5.33	5.03	5.18	5.33	5.06	5.20	4.66	4.53	4.60
	15.0 30.0	5.30 5.37	5.06 5.20	5.18 5.28	5.50 5.66	5.33 5.50	5.42 5.58	4.43 4.90	4.70 5.03	4.57 4.97

Table 3. Microbiological data per g dry soil and physical properties for riparian plant communities by depths. Telephone Creek study site.

¹Values with same letters or no letters indicate no significant difference at $\alpha = 0.05$.

Soil 	Repetition	Nitrous Oxide Production	Heterotrophic Aerobic Bacteria	Soil Physical Properties			
		ug N ₂ 0 (g dry soil ⁻¹)	Viable Cells x 10 ⁷ (g dry soil ⁻¹)	Organic Matter %	Water Content (% wet)	рН	
Fresh	1	2.1	1.1	18.0	47.4	5.95	
	2	14.88	2.4	30.0	60.9	6.00	
	3	2.35	1.3	18.8	47.7	6.00	
Frozen	1	1.10	1.2	19.4	48.7	5.90	
	2	3.06	5.9	31.0	56.1	5.95	
	3	0.67	1.0	18.7	48.0	6.00	

.

Table 4. Nitrous oxide production, heterotrophic aerobic bacteria and physical properties for fresh and frozen soil samples.

.

.

Nitrous oxide production was not significantly affected by freezing of soil samples(Appendix D), yet data presented in Table 4 indicated that more N₂O was produced in fresh soils than those frozen for 2 weeks. These data support that of others with regards to the effects of organic matter and water content on denitrification (McGarity and Myers 1968, Focht et al. 1979, Delwiche 1981, Payne 1981). As soil organic matter increases so does the soil's water holding capacity and in turn denitrification (Wijler and Delwiche 1954, Cady and Bartholomew 1960, Craswell 1978, Smith and Tiedje 1979a, 1979b, Payne 1981, Rolston et al. 1982).

Denitrifying Bacteria: Focht (1978) suggested no relationships exist between denitrifying bacterial populations in soils and N₂O production whereas this study suggests such relationships do exist (Table 5). Values obtained for denitrifying bacteria were higher in the upper 5 to 15 cm than at 30 cm and upland did not contain as many denitrifying organisms as the moist or wet meadow soils (Table 2). The values obtained in this study appear about two log lower per gram of soil than those reported for Domino silty clay loam and a Ramona sandy loam both from California (Focht and Joseph 1973), yet the same trend, decreasing numbers with depth, was observed. It is possible that Focht and Joseph (1973) were using agricultural soils that may have been amended with N fertilizer or utilizable organic matter, thus increasing the potential for denitrifying bacteria (Focht and Verstraete 1977, Tiedje et al. 1982).

<u>Sulfate-Reducing Bacteria</u>: Sulfate-reducing bacteria appeared to be more abundant in the upper 15 cm than at 30 cm (Table 2) for all plant communities (Table 3). The data also suggested that higher counts of sulfate-reducing bacteria were found in the wet and moist meadow

14

Table 5.	Correlation regression matrix	for a	all soil	l microbial	parameters	and	physical	properties,	north
	side Telephone Creek.								

	Denitifying Bacteria	Sulfate- Reducing Bacteria	Heterotrophic Aerobic Bacteria	Nitrous Oxide Production	Organic Matter	Water Content	рН
Denitrifying Bacteria	1.000						
Sulfate-Reducing Bacteria	1.5572	1.000					
Heterotrophic Aerobic Bacteri	.3917 a	.2972	1.000				
Nitrous Oxide Production	.7203	.1579	.3303	1.000			
Organic Matter	.4140	.1450	.3355	.4792	1.000		
Water Content	.4814	.2879	.3789	.4498	.8996	1.000	
рН	.1116	.0308	.0968	.2213	.2016	.3306	1.000

¹Numbers represent correlation coefficients for one variable compared to another. Values approaching 1.0 indicate high degree of correlation.

soils than in the upland soils (Table 2). These data were consistent with those of other researchers who noted that sulfate-reducing bacteria are abundant in bogs, swamps, muds, and poorly drained soils because they proliferate under anaerobic conditions utilizing sulfate $(SO_4^{=})$ as the terminal electron accepter. (ZoBell 1958, 1963, Postgate 1959, 1965, 1979, 1984, Peck 1962, Campbell and Postgate 1965, Bremner and Steele 1978).

<u>Total Heterotrophic Aerobic Bacteria</u>: Plate counts on Henrici agar found that more bacteria were present at 5 cm than at 15 or 30 cm for all plant communities, and that higher counts were attained for wet meadow soils than moist meadow or upland soils (Table 2).

The design of this study was constructed to establish three different transects through the riparian system to obtain a more statistically sound estimate by lumping the data of the bacterial numbers at a sampling time. It was initially assumed that there would be no differences between transects, but this was not the case (Table 6). Statistical analysis of these data revealed some significant differences in bacterial numbers and soil physical properties between transects; thus the sensitivity of this study to detect differences between depths in the soil and vegetative communities was greatly reduced. The importance of this finding is that many more transects, or more intensive sampling of a transect must be taken to adequately describe the distribution of bacteria and soil physical parameters within riparian zones.

The Telephone Creek sampling site was chosen to represent streamside riparian communities and was sampled extensively. In contrast, a less extensive sampling scheme was initiated directly across Telephone

16

Vegetative Community	Transect (Reps.)	N ₂ 0 Produced	L	og Viable C	ells	Soil Phy	sical Prop	erties
		ug N ₂ 0	Denitrifying Bacteria	Sulfate- Reducing Bacteria	Heterotrophic Aerobic Bacteria	Organic Matter(%)	Water Content (% wet)	рH
Wet	1	1.41	5.78a	5.42	7.48a	31.98	60.40	5.23
Meadow	2	0.85	4.58	3.19	6.31	8.73a	36.13a	5.32
	2 3	0.35	3.61	3.93	6.57	24.33	61.52	5.10
Moist	1	1 1.15ab	4.96	4.14	6.81	15.46	44.53	5.56
Meadow	1	3.42a	5.48	3.59	6.97	19.17	42.88	5.65
Meadow	1 2 3	0.51b	5.13	3.38	5.96	10.48	35.41	4.98a
Upland	1	0.70	4.16	2.64	6.78	6.37	13.60	4.80
oprana	2	0.11	4.12	2.24	6,65	4.98	11.53	5.13
	1 2 3	0.11	3.23	2.73	6.46	4.18	13.15	4.20a

Table 6. Microbiological data obtained per g dry soil and soil physical properties for each transect placed within the Telephone Creek study site.

¹Values with same letters indicate no significant differences at $\alpha = 0.05$, n = 6.

Creek within a riparian zone developed over alluvial soils deposited in a sub-alpine pond. There were four distinct plant communities. The wettest, Carex bog, adjacent to the pond, was saturated, and appeared to be floating. Willow bog, Potentilla bog, and moist meadow communities upslope were present respectively from the Carex bog inland. Moist meadow represented the driest site and was considered the most advanced successional stage for pond filling. Data obtained (Table 7) represent only two samplings of this area. It is interesting to note that some of the findings discussed earlier are also evident here.

Nitrous oxide production from alluvial soils under plant communities within the filling sub-alpine pond appeared to decrease with depth, and was in general higher in those vegetative communities containing more organic matter and higher water contents (Table 7). Denitrifying bacteria and sulfate-reducing bacteria also appeared to decrease with depth over all, yet did not exert the apparent finding as N_2^0 production did with regards to plant community (Table 7). Nitrous oxide production was noted to be less in the potentilla bog than in the other plant types. Although not statistically significant it appears that the potentilla community contained more denitrifying bacteria (Table 7). The carex bog appeared to contain more heterotrophic aerobic bacteria, sulfate-reducing bacteria and N_2^0 production potential than the other communities, yet appeared to have less denitrifying bacteria (Table 7).

Parameter	Depths cm^1	Carex Bog	Willow Bog	Potentilla	Moist Meadow	$Mean^3$
ug N ₂ 0 Produced	5.0	10.76a ⁴	2.98	3.13	1.68	4.64a
2 2	15.0	2.21	2.04	0.45	1.96	1.67
	30.02		0.69	0.09	1.90	0.67
	Mean ²	0.00 4.32a ⁵	1.90ab	1.22b	1.85ab	
Log	5.0	5.08	4.98	6.57	5.22	6.01
Denitrifying	15.0	4.51	5.59	5.45	5.34	5.36
Bacteria	30.0	4.52	5.19	3.87	5.05	4.97
	Mean	4.79	5.33	6.14	5.22	
Log Sulfate-	5.0	5.80	5.10a	4.86a	5.33	5.42
Reducing Bacteria	15.0	5.74	4.61b	4.65ab	4.69	5.23
_	30.0	4.89	3.37c	2.63b	4.48	4.44
	Mean	5.62a	4.75	4.59	4.99	
Log Heterotrophic	5.0	7.68	6.32	7.93	7.53	7.63
Aerobic Bacteria	15.0	8.51	6.44	6.83	7.51	7.96
Count	30.0	7.06	6.65	6.35	7.01	6.85
	Mean	8.10	6.49	7.50	7.41	
Estimate of	5.0	79.20	45.40a	51.25a	19.80a	48.91a
Organic Matter %	15.0	74.25	22.25ab	9.75	11.85	29.50
2	30.0	69.40	6.70ъ	2.35	8.60	21.76
	Mean	74.25a	24.80b	21.12bc	13.42c	

Table 7. Microbiological data per g dry soil and physical properties for riparian vegetative communities on pond filling site.

.

Parameter	Depths cm^1	Carex Bog	Willow Bog	Potentilla	Moist Meadow	Mean ³
Water Content %	5.0	87.65	71.05	59.05	34.15	62.98a
(wet weight)	15.0	86.90	55.35	34.60	30.10	51.74b
	30.0	85.85	28.40	18.40	26.00	39.66c
	Mean	86.80a	51.60b	37.35c	30.08c	
рН	5.0	5.70	5.90a	5.30	5.30	5.55a
	15.0	5.55	6.25ab	5.40	5.30	5.63al
	30.0	5.80	6.70Ъ	5.60	5.35	5.86Ъ
	Mean	5.68a	б.28Ъ	5.43c	5.32d	

Table 7. (continued)

¹₂Values for depths are averages of two samplings (September 8, and August 7, 1983). Mean values for vegetation communities are averages of six samplings (three depths each sampled twice).

³Mean values for depths are averages of eight samplings (four vegetative communities each sampled twice).

Numbers with same letters or no letters indicate no significant differences between depths at α = 0.05, n = 2.

⁵Mean values with same letter or no letters indicate no significant differences between vegetative communities or depths at $\alpha = 0.05$, n = 6.

SUMMARY AND CONCLUSIONS

The occurrence of denitrifying and sulfate-reducing bacteria within the riparian soils of a high mountain watershed was analyzed to determine whether their presence and distribution was related to plant community and soil depth. Denitrification potential, denitrifying bacteria, sulfate-reducing bacteria, and heterotrophic aerobic bacterial numbers were determined for three depths (5, 15, and 30 cm) in five riparian soils and one upland soil. The study was carried out within the Medicine Bow National Forest approximately 50 km west of Laramie, Albany County, Wyoming at an elevation of about 3170 m.

The findings of this study can be summarized as follows:

- Nitrous oxide production was higher at 5 cm than at 15 or 30 cm for the soils of riparian habitat in a high mountain watershed.
- Nitrous oxide production appeared greater in soils containing more organic matter, higher water contents, and located nearer to the stream.
- 3) Denitrifying, sulfate-reducing, and heterotrophic aerobic bacteria appeared more abundant at 5 to 15 than at 30 cm depths, and, in general, increased with proximity to stream side.
- Organic matter content and water content increased with decreasing depth and proximity to the streams edge.

The greater apparent abundance and activity of microorganisms in close proximity to the stream's edge indicates that these soils could be of importance in protecting and regulating nutrient inputs to the stream from adjacent lands. The microbial aspects studied here if continuously monitored may provide researchers and land managers with information pertaining to activities such as grazing of livestock, wildlife and recreational use on adjacent uplands. Changes in soil moisture because of decrease in streamflow or increased user activity may well be detected by further studying these organisms and water relationships in riparian zones.

22

LITERATURE CITED

- Atlas, R.M. and R. Bartha. 1981. Microbial Ecology: Fundamentals and Applications. Addison-Wesley Publishing Co., Reading, MA.
- Aulakh, M.S., D.A. Rennie, and E.A. Paul. 1982. Gaseous nitrogen losses from cropped and summer-fallowed soils. Can. J. Soil. Sci. 62:187-195.
- Blackmer, A.M. and J.M. Bremner. 1977. Gas chromatographic analysis of soil atmospheres. Soil Sci Soc. Am. J. 41:908-912.
- Blackmer, A.M., J.M. Bremner, and E.L. Schmidt. 1980. Production of nitrous oxide by ammonia-oxidizing chemoactotrophic microorganisms in soil. App. and Env. Micro. 40:1060-1066.
- Bremner, J. M. and C.G. Steele. 1978. Role of microoganisms in the atmospheric sulfur cycle. Adv. Microb. Ecol. 2:155-201.
- Bunkhouse, J. C. and G.F. Gifford. 1976. Water quality implications of cattle grazing on a semiarid watershed in southeastern Utah. J. Range Manage. 29:109-113.
- Busby, F. E. 1978. Riparian and stream ecosystems livestock grazing, and multiple use. Manage. Proc. of Forum-Grazing and Riparian Stream Ecosystems. Denver, CO. P. 21-30.
- Cady, F. B. and W. V. Bartholomew. 1960. Sequential products of anaerobic denitrification in Norfolk soil material. Soil Sci. Soc. Am. Proc. 24:477-482.
- Campbell, L. L. and J.R. Postgate. 1965. Classification of the spore forming sulfate-reducing bacteria. Bacteriol. Rev. 29:359.
- Cooper, J. L. 1976. United States Forest Service stream survey procedure - Northern Region. In: Proceedings of the symposium and specialty conference on instream flow needs. Vol. II; May 1976. Boise, ID. Bethesda, Md. Amer. Fisheries Society 1976:300-313.
- Craswell, E. T. and A.E. Martin. 1974. Effect of moisture content on denitrification in a clay soil. Soil Biol. Biochem. 6:127-129.
- Craswell, E. T. 1978. Some factors influencing denitrification and nitrogen immobilization in a clay soil. Soil Biol. Biochem. 10:241-245.
- Davies, B. E. 1974. Loss-on-ignition as an estimate of soil organic matter. Soil. Sci. Soc. Am. Proc. 38:150-151.
- Delwiche, C. C. and B.A. Bryan. 1976. Denitrification. Ann. Rev. Microbiol. 30:241-262.

- Delwiche, C. C. 1981. Denitrification, Nitrification, and Atmospheric Nitrous Oxide. John Wiley and Sons, New York, NY. 286 p.
- Denmead, O.T., J.R. Freney, and J.R. Simpson. 1979. Nitrous oxide emission during denitrification in a flooded field. Soil Sic. Soc. Am. J. 43:716-718.
- Duff, D. A. and J.L. Cooper. 1978. Techniques for conducting stream habitat surveys on national resource land. Tech. Note 2 and 3. Denver, Co. U.S. Dep. of the Int. BLM:77p.
- Focht, D. D. and H. Joseph. 1973. An improved method for the enumeration of denitrifying bacteria. Soil. Sci. Soc. Amer. Proc. 37:698-699.
- Focht, D. D. 1978. Analysis of denitrification In: D.R. Neilson and J.A. MacDonald (eds). Nitrogen in the Environment. Vol. 2. Academic Press. New York, NY. pp. 433-490.
- Focht, D. D. and W. Verstraete. 1977. Biochemical ecology of nitrification and denitrification. In: M. Alexander (ed). Advances in Microbial Ecology. Vol. 2. Plenum Press, New York, NY. pp. 135-214.
- Focht, D. D., L.H. Stolzy, and B.D. Meek. 1979. Sequential reduction of nitrate and nitrous oxide under field conditions as brought about by organic amendments and irrigation management. Soil Biol. Biochem. 11:37-46.
- Gamble, T. N., M.R. Betlach, and J.M. Tiedje. 1977. Numerically dominant denitrifying bacteria from world soils. App. Environ. Microbiol. 33:916-939.
- Haugen G. and D. Duff. 1982. Best management practices for the management and protection of western riparian stream ecosystems. Amer. Fisheries Soc. Western Div. Pub. 45p.
- Hutchinson, G.L. and A.R. Moiser. 1981. Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci. Soc. Am. J. 45:311-316.
- Jahn, L. R. 1978. Values of riparian habitat to natural ecosystems. Proceedings of Symposium Strategies for Protection and Manage. of Floodplain Wetlands and Other Riparian Ecosystems. USDA. For. Ser. GTR-WO-12:157-160.
- Jawson, M. D., L.F. Elliott, K.E. Saxton, and D.H. Fortier. 1982. The effect of cattle grazing on indicator bacteria in runoff from a pacific northwest watershed. J. Environ. Qual. 11:621-627.
- Johnson, R.R. 1978. The lower Colorado river: A western system. Proceedings of Symposium Strategies for Protection and Manage. of Floodplain Wetlands and Other Riparian Ecosystems. USDA. For. Ser. GTR-WO-12:41-55.

- Jury, W.A., J. Letey, and T. Collins. 1982. Analysis of chamber methods used for measuring nitrous oxide production in the field. Soil Sci. Soc. Am. J. 46:250-256.
- Kirbby, H. V. 1978. Effects of wetlands on water quality. Proceedings of Symposium Strategies for Protection and Manage. of Floodplain Wetlands and Other Riparian Ecosystems. USDA. For. Ser. GTR-W0-12:299-298.
- Knowles, R. 1981a. Denitrification In: Clark, F.E. and T. Rossnall (eds). Terrestrial Nitrogen Cycles. Processes, Ecosystem Stratigies, and Management Impactas. Ecol. Bull. (Stockholm) 33:315-329.
- Knowles, R. 1981b. Denitrification In: Paul, E. A. and J. Ladd (eds). Soil Biochemistry. Vol. 5. Marcel Dekker Inc. New York, NY. pp. 323-364.

Knowles, R. 1982. Denitrification. Microbiol Rev. 46:43-70.

- Lensi, R. and A. Chaulamet. 1982. Denitrification in waterlogged soils: In Situ Temperature Dependent Variations. Soil Biol. and Biochem. 14:51-55.
- Letey, J., N. Valoras, A. Hades, and D.D. Focht. 1980. Effect of air-filled porosity, nitrate concentration and time on the ratio of N₂O/N₂ evolution during denitrification. J. Environ. Qual. 9:227-231.
- Mahendrappa, M. K., and R.L. Smith. 1967. Some effects of moisture on denitrification in acid and alkaline soils. Soil Sci. Soc. Am. Proc. 31:212-215.
- Mara, D. D. and D.J.A. Williams. 1970. The Evaluation of media used to enumerate sulfate-reducing bacteria. J. Appl. Bacteriol. 33:543-552.
- McGarity, J. W. 1961. Denitrification studies on some South Australian soils. Plant Soil 14:1-21.
- McGarity, J. W., and R.J.K. Myers. 1968. Denitrifying activity in solodized solonets soils of Eastern Australia. Soil Sci. Soc. Am. Proc. 32:812-817.
- McLean, E. O. 1982. Soil pH and lime requirement. In: Page, A. L., R.H. Miller, and D.R. Kenney (eds). Methods of Soil Analysis, Part
 Chemical and Microbiological Properties. 2nd Edition. Agronomy Monograph #9. Amer. Soc. of Agronomy, Soil Sci. Soc. of Amer. Madison, WI. pp. 199-224.
- Morrison, S. M. and J.F. Fair 1966. Influence of environment on stream microbial dynamics. Hydrology Paper 13, Colo. St. Univ. Fort Collins, Co. 21 pages.

- Mosier, A.R., M. Stilwell, W.S. Patton, and R.G. Woodmansee. 1981. Nitrous oxide emissions from a native short grass prairie. Soil Sci. Soc. Am. J. 45:617-619.
- Odum, E. P. 1978. Ecological importance of the riparian zone. Proceedings of Symposium Strategies for Protection and Manage. of Floodplain Wetlands and Other Riparian Ecosystems. USDA. For. Ser. GTR-WO-12:11-13.
- Patten, D. K., J.M. Bremner, and A.M. Blackmer. 1980. Effects of drying and air-dry storage of soils on their capacity for denitrification of nitrate. Soil. Sci. Soc. Am. J. 44:62-70.
- Payne, W.J. 1973. Reduction of nitrogenous oxides by microorganisms. Bacteriol. Rev. 37:409-452.
- Payne, W.J. 1981. Denitrification. John Wiley and Sons, Inc. New York, NY. 217 pp.
- Peck, H. D. Jr. 1962. Comparative metabolism of inorganic sulfur compounds in microorganisms. Bacteriol. Rev. 26:67.
- Pfennig, N. and F. Widdel. 1981. Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle - In: Bothe, H., and T. Trebst (eds). Biology of Inorganic Nitrogen and Sulfur. Springer-Verlag. Heidelberg. pp. 169-177.
- Platts, W. S. 1978. The effects of livestock grazing on aquatic environments, riparian environments, and fisheries in Idaho, Utah, and Nevada--a study plan. Boise, ID. US. Dep. of Agriculture, Forest Service Intermountain Forest and Range Exp. Sta. 100 p. Unpublished.
- Platts, W.S., W.F. Megahn, and G.W. Minshall. 1983. Methods for evaluating stream, riparian and biotic conditions. USDA. USFS. General Technical Report INT. 138, 70 pages.
- Postgate, J. R. 1959. Sulfate reduction by bacteria. A. Rev. Microbiol. 13:505-520.
- Postgate, J. R. 1965. Recent advances in the study of the sulfate-reducing bacteria. Bact. Rev. 29:425-441.
- Postgate, J. R. 1979. The Sulphate-Reducing Bacteria. Cambridge Univ. Press. Cambridge. 151 p.
- Postgate, J. R. 1984. The Sulphate-Reducing Bacteria. Second edition. Cambridge Univ. Press. Cambridge. 208 p.
- Robinson, J. L. 1982. Development and testing of stream morphology evaluation method for measuring user impact on riparian zones. M.S. Thesis. University of Wyoming. 145 p.

- Rolston, D. E., A. P. Sharpley, D.W. Toy and F.E. Boardbent. 1982. Field measurement of denitrification: III rates during irrigation cycles. Soil. Sci. Soc. Am. J. 46:289-296.
- Ryden, J.C. and L.J. Lund. 1980. Nature and extent of directly measured denitrification losses from some irrigated vegetable crop production units. Soil Sic. Soc. Am. J. 44:505-511.
- Ryden, J.C. 1982. Effects of acetylene on nitrification and denitrification in two soils during incubation with ammonium nitrate. J. Soil Science. 33:263-270.
- Sadykov, B.F., L.D. Zuera, and S.M. Poldneva. 1983. Determination of denitrifying activity of soil microorganisms using acetylene. Mikrobiologia. 5:490-495.
- Settergren, C.D. 1977. Impacts of river recreation use on streambank soils and vegetation state-of-the-knowledge. In: Proc. River Recreation Manage. and Research Symposium. USDA, USFS. General Technical Report NC-28. pp. 55-60.
- Skinner, Q. D., J.C. Adams, P.A. Rechard, and A.A. Beetle. 1974a. Enumeration of selected bacterial populations in a high mountain watershed. Can. J. Microbiol. 20:1487-1492.
- Skinner, Q. D., J.C. Adams, P.A. Rechard, and A.A. Beetle. 1974b. Effect of summer use of a mountain watershed on bacterial water quality. J. Environ. Qual. 3:329-335.
- Skinner, Q. D., J.E. Speck, Jr., M. Smith and J.C. Adams. 1984a. Stream water quality as influenced by beaver within grazing systems in Wyoming. J. Range Manage. 37:142-146.
- Skinner, Q. D., J.C. Adams, A.A. Beetle, and G.P. Roehrkasse, 1984b. Bacteriology downstream during summer in a mountain drainage basin. J. Range Manage. 37:269-274.
- Smith, M. S., and J. M. Tiedje. 1979a. Phases of denitrification following oxygen depletion in soil. Soil Biol. Biochem. 11:261-267.
- Smith, M. S. and J.M. Tiedje. 1979b. The effect of roots on soil denitrification. Soil Sci. Soc. Am. J. 43:951-955.
- Speck, J. E. Jr. 1981. A comparative study of the effects of continuous season-long and deferred-rotation grazing on mountain riparian vegetation and water quality. M.S. Thesis. University of Wyoming. 149 p.
- Stark, W. H. and E. McCoy. 1938. Distribution of bacteria in certain lakes of northern Wisconsin. Zentralblatt Bakteriologie Parasitenkunde Infektionskrankheit Abt. (2) 98:201-209.

- Steel, R. G. D. and J.H. Torrie. 1960. Principles and Procedures of Statics. McGraw-Hill Book Co. Inc., New York, 481 pages.
- Straka, R.P. and J.L. Stokes. 1957. Rapid destruction of bacteria in commonly used diluents and its elimination. Appl. Microbiol. 5:21-25.
- Swank, W. T. and W.H. Caskey. 1982. Nitrate depletion in a second-order mountain stream. J. Environ. Qual. 11:581-584.
- Terry, R.E. and R.L. Tate III. 1980. Denitrification as a pathway for nitrate removal from organic soils. Soil Sci. 129:162-166.
- Tiedje, J. M. 1982. Denitrification In: Page, A. L., R.H. Miller, and D.R. Keeney (eds). Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. 2nd edition. Agronomy Monograph #9. Amer. Soc. of Agronomy, Soil Sci. Soc. of Amer. Madison, WI. pp. 1011-1026.
- Tiedje, J. M., A.J. Sexstone, D.D. Myrold, and J.A. Robinson. 1982. Denitrification: ecological niches, competition and survival. Antonie Leeuwenhock Microbiol. 48:569-583.
- Wijler, J. and C.C. Delwiche. 1954. Investigations on the denitrifying process in soil. Plant and Soil 5:155-159.
- WWRC. 1983. Wyoming Water Research Center. Hydrologic Data. In preparation.
- Yeomans, J.C. and E.G. Beauchamp. 1982. Acetylene as a possible substrate in the denitrification process. Can. J. Soil Sci. 62:139-144.
- ZoBell, C. E. 1958. Ecology of sulfate-reducing bacteria. Producers Mon. Penn Oil Prod. Ass., 22:12-29.
- ZoBell, C. E. 1963. Organic geo-chemistry In: Berger, I.A. (ed) Organic Geochemistry. MacMillan, New York, NY. pp. 543-578.

APPENDIX A

FORMULAS APPLIED DURING ANALYSIS

.

FORMULAS APPLIED DURING ANALYSIS

1. Percent H₂0 (wet weight)
weight wet soil - weight oven dry soil (105°C 24 h) = weight dry
soil
weight dry soil - weight wet soil = weight water in soil
weight water in soil - weight wet soil X 100 = % water (wet weight)

- 2. To attain organisms per g dry soil
 - Wet weight soil X % water content (as a decimal) = weight water in soil
 - 2) Wet weight soil weight water in soil = weight dry soil
 - 3) $\frac{g \text{ dry soil}}{g \text{ wet soil } + 225 \text{ ml}}$ (in blender) = $\frac{1}{X}$ (first dilution)
 - 4) First dilution (X) X value obtained (less one power of 10) =

organisms g dry soil

example:

Henrici counts = 137×10^5 average = $138 \times 10^5 = 1.38 \times 10^7$ and 139×10^5

Soil used (wet weight) 31.8 g into 225 ml distilled ${\rm H_20}$ (in blender)

Soil water content (% wet) 64.9%

 $31.8 \times .649 = 20.64 \text{ g H}_20 \text{ in soil}$

31.8 g wet soil - 20.64 g H_20 = 11.16 g dry soil

30

$$\frac{11.16 \text{ g dry soil}}{31.8 \text{ g wet soil} + 225 \text{ ml}} = .04346 = \frac{1}{23.007} \text{ (first dilution)}$$

$$23.007 \text{ X } 1.38 \text{ X } 10^6 = 3.17 \text{ X } 10^7 \text{ organisms/g dry soil}$$

3. Procedures for N₂O calculations

formula $M = CG (Vg + Vl \alpha)$ where: $M = Total amt. N_20$ in water and gaseous phases $Cg = [N_20 \text{ in gas phase}] \text{ ppm or nl/cc}$ Vl = Volume liquid Vg = Volume gas (headspace) $\alpha = Bunsen absorption coefficient at 20°C <math>\alpha \simeq .588$ (Tiedje 1982)

example:

 $M = 94 \text{ nl/cc } N_2^{0} \text{ (ppm)} (52 \text{ cc} + 87 \text{ cc} (.588))$ $M = 94 \text{ nl } N_2^{0} (103.156) = 9696.664 \text{ nl } N_2^{0}$ 9696.664 nl = 9.696 ul $9.696 \text{ ul } N_2^{0} - 26.3 \text{ g dry soil}$ $.368 \text{ ul } N_2^{0}/\text{g dry soil}$

given:

- a. Volume liquid = 87 cc
- b. Volume gas = 52 cc
- c. 94 ml N₂O produced
- d. Soil contained 47.4% H₂0
- e. Used 50.0 g wet soil
- f. Thus used 26.3 g dry soil

4. Procedure for conversion of ul N_2^0 into ug N_2^0 (Petrucci 1982)

```
use n = PV/RT where: n = number moles

P = Pressure (atmosphere)

V = Volume N<sub>2</sub>O L

R = .0821 L atm mole<sup>-1</sup>°K<sup>-1</sup>

T = Temp °K
```

example:

On November 4, 1983, the GC work was done for this example. The atmospheric pressure was 23 inches of HG = 584.2 mm Hg, and .368 ml N_2^{0} was produced per g dry soil.

1 atm = 760 mm Hg.
atm =
$$\frac{584.2 \text{ mm Hg}}{760 \text{ mm Hg}}$$
 = .7687 atm
n = $\frac{.769 \text{ atm} (.368 \times 10^{-6} \text{ L N}_20)}{.769 \text{ atm} (.368 \times 10^{-6} \text{ L N}_20)}$

n =
$$\frac{.769 \text{ atm } (.368 \text{ X } 10^{-6} \text{ L N}_20) \text{ mole }^{\circ}\text{K}}{.0821 \text{ L atm mole}^{-1} (293^{\circ}\text{K})}$$

$$n = \frac{2.829 \times 10^{-7} \text{ mole } N_2^0}{24.0553} = 1.176 \times 10^{-8} \text{ moles } N_2^0$$

g N₂0 = 1.176 × 10⁻⁸ moles N₂0 × $\frac{44 \text{ g N}_2^0}{\text{mole } N_2^0}$
= 5.17 × 10⁻⁷ g N₂0 = .517 ug N₂0 per g dry soil

where:

$$N = 14.0 \text{ g/mole}$$

0 = 16.0 g/mole $N_2^0 = 44 \text{ g/mole}$ $ug = 10^{-6} \text{ g}$

APPENDIX B

DENITRIFICATION AND THE MEASUREMENT OF N_O PRODUCTION BY ELECTRON CAPTURE GAS CHROMATOGRAPHY

DENITRIFICATION AND THE MEASUREMENT OF N₂O PRODUCTION BY ELECTRON CAPTURE GAS CHROMATOGRAPHY

Denitrifying bacteria are facultative aerobes (Payne, 1981, Delwiche 1981), and are common in fresh waters and soils (Atlas and Barthe 1981). Denitrification is the dissimilatory reduction of nitrate (NO_3^-) and nitrite (NO_2^-) to the gaseous oxides nitric oxide (NO) and nitrous oxide (N_2^0) , with the final end product nitrogen gas (N_2) via the sequence:

 $NO_3 \rightarrow NO_2 \rightarrow NO \rightarrow N_2O \rightarrow N_2$

(Payne 1973, Delwiche 1981, Knowles 1982, Tiedje 1982). The chief end products of denitrification are N_2^0 and N_2 (Letey et al. 1980, Rolston et al. 1978, Terry and Tate 1980, Ryden and Lund 1980). Denitrification by the above pathway can be done biologically only by bacteria (Focht 1978, Tiedje 1982, Delwiche 1981). The denitrifying bacteria utilize NO_3^- or NO_2^- as a terminal electron acceptor when oxygen (O_2) is limiting (Delwiche and Bryan 1976).

The accurate measurement of denitrification using gas chromatography has been well established (Blackmer and Bremner 1977, Denmead et al. 1979, Ryden et al. 1979, Matthias et al. 1980, Ryden and Lund 1980, Hutchinson and Mosier 1981, Mosier et al. 1981, Jury et al. 1982, Lensi and Chalant 1982, Swank and Caskey 1982, Sadykov et al. 1983). The use of acetylene (C_2H_2) has been shown in inhibit nitrification, another source of atmospheric N_20 (Blackmer et al. 1980, Aulakeh et al. 1982), and does not provide a carbon source for denitrifying bacteria (Yeoman and Beauchamp 1982). Acetylene blocks the reduction of N_20 to N_2 , thus the measurement of N_20 in the presence of C_2H_2 provides a direct measurement of denitrification (Ryden 1982).

Modified methods of Swank and Caskey (1982) were employed to measure $N_{2}O$ production. Soil samples were frozen (-12°C) for 30 to 35 days prior to G.C. analysis. The frozen samples were thawed at 20°-22°C 12 h before being processed. Nitrous oxide production was measured in 10% C_2H_2 v/v inhibited slurries prepared by adding 50 ml of a solution containing .32 g potassium nitrate (KNO3), 1.0 g glucose, and .25 g chloramphenicol (Sigma Chemical Co., St. Louis, MO.) per L $\rm H_2O$ to 50 g (wet weight) soil in 125 ml Erlenmyer flasks. Chloramphenicol was used to inhibit protein synthesis in procaryotic cells, thus N_2^0 production rates reflect the maximum activity of preexisting denitrifying enzymes present at the start of the experiment (Swank and Caskey 1982). The flasks were then stoppered. The rubber stoppers used were pierced with two sections of glass tubing (0.5 mm ID). At the top of one tube was a small section of rubber tubing extending approximately 2.5 cm above and below the glass tubing. To the top of the other glass tube was attached tubing from 0, free Ar (Linde Specialty Gases). Argon is passed into the flask for 5 min. while swirling the slurry to remove as much 0_2 as possible. The other tube is left open during this purging process

(Figure B1A). The exhaust tube was then clamped tight, developing positive pressure within the flask (Figure B1B). The tube to the Ar was then removed (equalizing pressure) and a serum stopper was quickly inserted into the exposed glass tube (Figure B1C). This process results in an air-tight anerobic environment within the flasks. Ten percent of the headspace was then removed using a gas tight syringe (Hamilton Co., Reno, NV) and an equal amount of C_2H_2 (Linde) injected back into the headspace using the same syringe. The flasks were then incubated for 2 h at 22°C ± 2°C in a PsycroTherm Controlled Environment Incubator Shaker (New Brunswick Scientific, Edison NJ) at 300 rpm. After incubation the flasks were transported to the USDA Honey Bee Pesticide Lab, about 5 minutes away, for G.C. analysis.

Nitrous oxide was measured using a Hewlett Packard 5730 A gas chromatograph equipped with a 63 Ni electron capture detector. Separation of N₂O was achieved using a 3 mm X 1.8 m Parapak Q 80/100 mesh (Supelco Inc.) column at 50°C. Carrier gas was 5% methane in Ar flowing at 60 ml per min. Detector temperature was 300°C and injector temperature was 250°C. Injections were made with Hamilton (Hamilton Co., Reno, NV) microliter gas-tight syringes. Two certified gas standards (Scott Specialty Gases, Troy, MI) containing 99.61 ppm N₂O in Ar and 1069 ppm N₂O and 1012 ppm C₂H₂ in Ar were used to prepare standards curves. Nitrous oxide retention time under the above conditions was about 1.77 min. Steam-sterilized soils produced no peaks at or around 1.77 min. indicating no N₂O production. Peak heights were

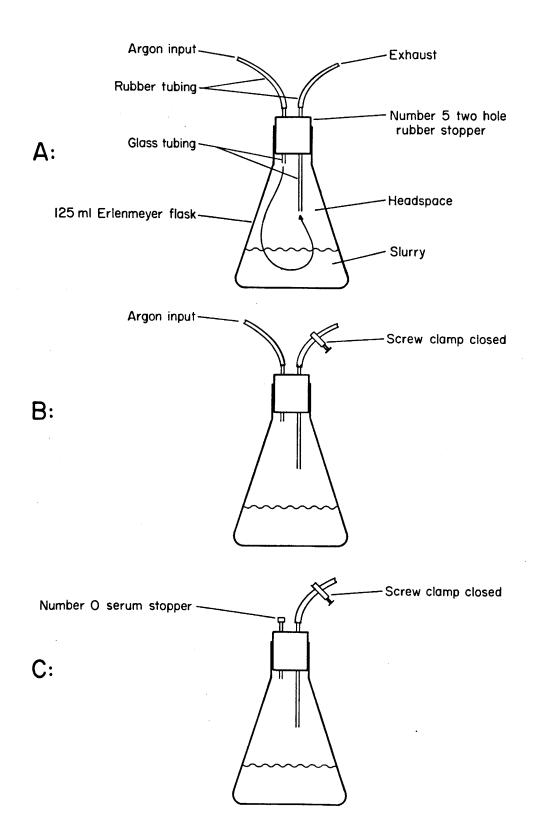


Figure B1. Flask used to measure denitrification potential. A: O_2 free Ar is used to purge flask, B: purging process complete, screw clamp closed, positive pressure, C: pressure released and anaerobic environment maintained with serum stopper.

used in quantitating amounts of N₂O produced. Multiple injections from each sample were made and average values obtained. It is recommended that at least 5 min. be allowed to pass between injections so that peaks from one injection do not show up on the next injection. Typical chromatograms resulting from this procedure are presented in Figures B2 and B3.

ļ

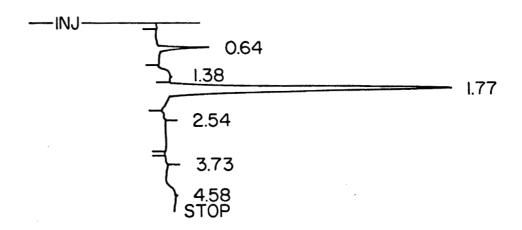


Figure B2. Chromatogram resulting from 5.0 μ l injection of 1069 ppm N₂O in Ar, attenuation 64, 30 mv/min, N₂O retention time was 1.77 min.

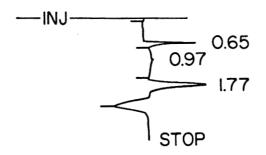


Figure B3. Chromatogram resulting from 5.0 μ l injection of atmosphere from soil sample of wet meadow at a depth of 15 cm, attenuation 64, 30 mv/min, N₂O retention time was 1.77 min.

APPENDIX C

RAW DATA FOR SOIL MICROBIOLOGY OF THE NORTH AND SOUTH SIDE OF TELEPHONE CREEK, 1983

RAW DATA FOR SOIL MICROBIOLOGY NORTH AND SOUTH SIDE TELEPHONE CREEK 1983

(Values are g dry soil⁻¹)

				L	og Viable Cel	ls		Soil	l Physical P	roperties
Date of Sampling	Atmospheric Pressure date of G.C. Work	Vegetative Community	Soil Depth cm	MPN Denitrifying Bacteria	Sulfate- Reducing Bacteria	Heterotrophic Aerobic Bacteria	ug N ₂ O Produced	рН	Organic Matter %	Water Content (% wet)
8-15-83	.772 atm	Wet Meadow	5	5.89	5.72	7.51	3.97	5.1	23.9	64.9
(Middle			15	4.98	4.62	7.18	1.56	5.1	30.5	61.6
transect North side)			30	4.48	3.36	6.26	0.38	5.5	23.1	52.2
North Brue)		Moist Meadow	5	5.49	5.57	7.28	4.34	5.5	24.1	55.6
			15	3.41	3.86	6.39	0.82	5.7	15.7	46.0
			30	3.52	2.53	5.96	0.23	5.8	6.4	23.0
	Upland	5	4.38	2.86	7.20	1.58	4.7	13.1	23.2	
		•	15	4.23	3.11	6.79	2.21	4.7	5.7	17.6
			30	4.08	1.97	6.00	0.20	5.0	2.5	9.7
8-16-83	.771 atm	Wet Meadow	5	4.15	3.59	6.80	2.02	5.4	13.4	44.7
(East			15	4.61	2.08	5.92	0.12	5.6	6.8	32.7
ransect North side)			30	4.59	3.04	6.15	0.00	5.6	3.2	30.0
orth brucy		Moist Meadow	5	5.48	3.96	7.23	4.89	5.7	29.3	63.6
			15	4.67	2.95	6.49	2.25	5.8	14.7	40.7
			30	4.15	2.46	6.34	0.14	5.8	5.6	25.1
		Upland	5	3.54	2.85	6.87	0.22	5.0	8.1	21.7
		-	15	4.49	1.49	6.63	0.06	5.4	3.5	10.6
			30	4.63	0.00	6.38	0.00	5.6	2.8	12.1

4

	Associate			L	og Viable Cel	ls		Soil Physical Properties		
Date of Sampling	Atmospheric Pressure date of G.C. Work	Vegetative Community	Soil Depth cm	MPN Denitrifying Bacteria	Sulfate- Reducing Bacteria	Heterotrophic Aerobic Bacteria	ug N ₂ 0 Produced	рН	Organic Matter %	Water Content (% wet)
8-17-83	.772 atm	Wet Meadow	5	4.23	4.04	6.70	0.35	5.3	48.0	78.2
(West transect North side)			15 · 30	3.54 2.41	4.08 3.04	2.30 5.85	0.36 0.02	5.2 4.9	47.8 11.4	74.8 37.1
ioren arde)		Moist Meadow	5	5.88	3.88	6.00	1.54	4.8	18.1	56.1
			15	4.34	2.52	5.87	0.18	5.0	10.0	38.4
		30	3.84	2.59	5.59	0.03	5.4	2.7	23.5	
	Upland	5	3.65	2.59	6.93	0.06	4.3	4.7	13.9	
		-	15	3.20	2.62	6.30	0.06	4.1	4.3	18.4
			30	3.00	2.80	5.97	0.06	4.1	2.6	16.4
-12-83	.772 atm	Wet Meadow	5	5.67	4.75	7.36	1.15	5.1	30.4	64.2
Middle			15	5.87	5.98	7.38	1.08	5.2	18.4	62.0
ransect lorth side)			30	4.79	3.63	6.94	0.03	5.4	19.7	57.5
		Moist Meadow	5	5.36	4.54	7.15	1.26	5.2	18.5	60.2
			15	3.51	3.46	6.25	0.23	5.5	16.7	45.3
			30	2.23	2.91	5.98	0.05	5.7	11.4	37.1
	•	Upland	5	3.87	2.65	8.04	0.10	4.6	9.8	11.9
		-	15	4.43	1.76	7.04	0.08	4.8	3.9	8.8
			30	3.32	0.48	7.04	0.04	5.0	3.2	10.35

	· · · · · ·			L	og Viable Cel	ls		Soil Physical Properties		
Date of Sampling	Atmospheric Pressure date of G.C. Work	Vegetative Community	Soil Depth cm	MPN Denitrifying Bacteria	Sulfate- Reducing Bacteria	Heterotrophic Aerobic Bacteria	ug N ₂ 0 Froduced	рН	Organic Matter %	Water Content (% wet)
9-13-83	.762 atm	Wet Meadow	5	2.89	3.41	6.38	2.34	4.9	19.1	52.9
(East			15	5.11	3.04	5.99	0.64	5.0	15.0	51.0
transect North side)			30	3.30	2.62	5.50	0.00	5.2	1.5	17.5
		Moist Meadow	5	5.98	3.92	7.45	8.06	5.4	39.5	59.4
			15	5.69	3.53	6.72	5.00	5.6	20.4	47.2
			30	3.63	3.11	5.78	0.07	5.7	5.5	21.3
		Upland	5	2.83	1.75	6.82	0.11	4.9	9.1	10.6
			15	2.91	2.34	6.51	0.18	5.2	3.3	6.6
			30	1.51	1.46	6.41	0.08	5.6	3.1	7.6
-14-83	.758 atm	Wet Meadow	5	3.34	3.25	6.60	0.60	5.1	30.6	65.0
West			15	3.26	4.15	6.72	0.63	5.0	31.0	59.0
ransect lorth side)			30	2.15	3.76	6.08	0.19	5.0	23.1	55.0
•		Moist Meadow	5	4.30	3.53	6.45	0.90	4.6	20.2	44.5
			15	2.94	3.43	5.66	0.26	4.9	10.0	36.3
			30	1.86	1.84	5.11	0.15	5.1	1.9	13.6
		Upland	5	1.54	2.36	6.41	0.19	4.1	6.0	10.1
			15	2.95	2.97	6.32	0.16	4.1	4.6	11.3
			30	3.32	2.81	6.00	0.14	4.5	2.9	8.8

43

.

•

.

	Atmoonhowin			L	og Viable Cel	ls		Soil Physical Properties		
Date of Sampling	Atmospheric Pressure date of G.C. Work	Vegetative Community	Soil Depth cm	MPN Denitrifying Bacteria	Sulfate- Reducing Bacteria	Heterotrophic Aerobic Bacteria	ug N ₂ O Produced	рН	Organic Matter %	Water Content (% wet)
8-8-83	.768 atm	Carex Bog	5	4.91	5.49	7.50	9.22	5.5	83.0	86.5
(South			15	4.72	5.97	7.41	4.41	5.4	74.9	87.6
ide)		30	4.77	4.67	7.26	0.00	6.1	73.5	88.8	
		Willow Bog	5	4.00	5.11	6.60	2.02	6.1	54.1	71.6
			15	5.78	4.73	6.38	1.74	6.2	28.0	69.7
			30	5.49	3.64	6.56	1.25	6.5	10.9	41.4
		Potentilla	5	6.08	4.86	7.09	1.02	5.5	39.2	64.9
		Bog	15	5.48	4.43	6.85	0.22	5.4	10.5	38.5
		-	30	4.67	2.53	5.93	0.12	5.6	1.6	19.5
		Moist Meadow	5	5.34	5.59	7.23	1.56	5.2	19.6	38.5
			15	4.64	4.72	7.20	2.06	5.3	12.4	36.7
			30	5.18	4.68	7.17	2.17	5.4	10.3	31.0

44

	Atmontosta			Log Viable Cells				Soil Physical Properties		
P Date of d	Atmospheric Pressure date of G.C. Work	Vegetative Community	Soil Depth cm	MPN Denitrifying Bacteria	Sulfate- Reducing Bacteri a	Heterotrophic Aerobic Bacteria	ug N ₂ 0 Produced	рН	Organic Matter %	Water Content (% wet)
9-7-83	.770 atm	Carex Bog	5	5.20	5.98	7.81	12.31	5.9	75.6	88.8
(South		-	15	4.11	5.15	8.74	3.02	5.7	73.4	86.2
side)		30	3.90	5.04	6.68	0.00	5.5	65.3	82.9	
		Willow Bog	5	5.26	5.08	5.18	5.96	5.7	36.7	70.5
		•	15	5.25	4.45	6.49	2.35	6.3	16.5	41.0
			30	3.08	2.43	6.73	0.13	6.8	2.5	15.4
		Potentilla	5	6.80	4.86	8.20	6.25	5.1	63.3	53.2
		Bog	15	5.43	4.80	6.81	0.69	5.4	9.0	30.7
	Ũ	30	5.00	2.71	6.56	0.05	5.5	3.1	17.3	
		Moist Meadow	5	5.04	4.62	7.72	1.79	5.4	20.0	29.8
			15	3.18	4.67	7.69	1.85	5.3	11.3	23.5
			30	4.87	4.08	6.76	1.63	5.3	6.9	21.0

APPENDIX D

T-TEST FOR COMPARING TWO SAMPLE MEANS WITH PAIRED OBSERVATIONS FOR STATISTICAL VERIFICATIONS FOR TABLE 4, COMPARISON OF FRESH AND FROZEN SOILS

T-TEST FOR COMPARING TWO SAMPLE MEANS WITH PAIRED OBSERVATIONS

STATISTICAL VERIFICATION FOR TABLE 4, COMPARING FRESH AND FROZEN SOILS

Parameter	Soil	Sum	Mean	Variance	St. Dev.	Total Sum of Squares	Corrected Sum of Squares	D.F.	T Value	95% Conf Interval the Mean Limit 1	
N ₂ O Production	Fresh Frozen	19.39 4.83	6.46 1.61	53.14 1.62	7.29 1.27	143.65	72.99	2	1.39	19.86	-10.15
Heterotrophic Aerobic Bacteria	Fresh Frozen	4.80 8.10	1.60 2.70	0.49 7.69	0.70 2.77	12.35	8.72	2	-0.91	4.09	- 6.29
Organic Matter	Fresh Frozen	66.80 69.10	22.27 23.03	45.01 47.72	6.71 6.91	2.97	1.21	2	-1.71	1.16	- 2.69
Water Content	Fresh Frozen	156.00 152.80	52.00 50.93	59.43 20.14	7.71 4.49	24.82	21.41	2	.564	9.19	- 7.06
рH	F re sh Frozen	17.95 · 17.85	5.98 5.95	.0008 .028	.0025 .050	.005	.0016	2	2.00	.7717	- 0.7050

APPENDIX E

ANALYSIS OF VARIANCE TABLES FOR THE NORTH SIDE SOILS OF TELEPHONE CREEK

THREE FACTOR ANALYSIS OF VARIANCE FOR NITROUS OXIDE PRODUCTION BY VEGETATION COMMUNITY, DEPTH, AND DATE OF SAMPLING FOR SOILS (NORTH SIDE TELEPHONE CREEK 1983).

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
MAIN EFFECTS	45.813	5	9.163	4.665	.002*
VEGETATION COMMUNITIES	17.502	2	8.751	4.455	•019 *
DEPTHS	28.051	2	14.025	7.141	.002*
DATE OF SAMPLING	•260	1	.260	•133	.718
2-WAY INTERACTIONS	16.885	8	2.111	1.075	.402
VEGCOM X DEPTH	15.391	4	3.848	1.959	.122
VEGCOM X DATE	.681	2	•340	.173	.842
DEPTH X DATE	.814	2	.407	.207	.814
3-WAY INTERACTIONS	•977	4	.244	.124	•973
VEGCOM X DEPTH X DATE	•977	4	.244	.124	•973
EXPLAINED	63.675	17	3.746	1.907	.051
RESIDUAL	70.706	36	1.964		
TOTAL	134.381	53	2.535		

* SIGNIFICANT AT THE 0.95 PROBABILITY LEVEL.

THREE FACTOR ANALYSIS OF VARIANCE FOR MPN DENITRIFYING BACTERIA BY VEGETATION COMMUNITY, DEPTH, AND DATE OF SAMPLING FOR SOILS (NORTH SIDE TELEPHONE CREEK 1983).

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
MAIN EFFECTS	653756.895	5	130751.379	2.903	.027*
VEGETATION COMMUNITIES	269758.459	2	134879.229	2.995	.063
DEPTHS	378368.050	2	189184.025	4.200	.023*
DATES OF SAMPLING	5630.386	1	5630.386	.125	.726
2-WAY INTERACTIONS	429259.629	8	53657.454	1.191	.331
VEGCOM X DEPTH	342199.915	4	85549.979	1.899	.132
VEGCOM X DATE	7444.164	2	3722.082	.083	.921
DEPTH X DATE	79615.550	2	39807.775	.884	.422
3-WAY INTERACTIONS	48032.896	4	12008.224	.267	.897
VEGCOM X DEPTH X DATE	48032.896	4	12008.224	.267	.897
EXPLAINED	1131049.419	17	66532.319	1.477	.159
RESIDUAL	1621464.207	36	45040.672		
TOTAL	2752513.626	53	51934.219		

* SIGNIFICANTAT THE 0.95 PROBABILITY LEVEL.

THREE FACTOR ANALYSIS OF VARIANCE FOR SULFATE-REDUCING BACTERIA BY VEGETATION COMMUNITY, DEPTH, AND DATE OF SAMPLING FOR SOILS (NORTH SIDE TELEPHONE CREEK 1983).

SOURCE OF VARIATION	SUM OF SQUARES	DF	MEAN SQUARE	F	SIGNIF OF F
MAIN EFFECTS VEGETATION COMMUNITIES DEPTHS DATES OF SAMPLING	128139.142 94055.677 30651.869 3431.595	2 47 2 15	627.828 027.839 325.935 431.595	2.145 .699	•343 •132 •504 •695
2-WAY INTERACTIONS VEGCOM X DEPTH VEGCOM X DATE DEPTH X DATE	121512.902 56849.655 7203.832 57459.415	4 14 2 3	189.113 212.414 601.916 729.707	.693 .648 .164 1.310	.695 .632 .849 .282
3-WAY INTERACTIONS VEGCOM X DEPTH X DATE	113222.533 113222.533	4 28	305.633 305.633	1.291 1.291	•292 •292
EXPLAINED RESIDUAL TOTAL	362874.577 789266.904 1152141.481	36 21	345.563 924.081 738.519	•974	•505

THREE FACTOR ANALYSIS OF VARIANCE FOR TOTAL HETEROTROPHIC AEROBIC BACTERIA BY VEGETATION COMMUNITY, DEPTH, AND DATE OF SAMPLING FOR SOILS (NORTH SIDE TELEPHONE CREEK 1983).

	SUM OF		MEAN	ł	SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
MAIN EFFECTS	122367.111	 5	24473.422	1.322	.277
VEGETATION COMMUNITIES	60832.448	2	30416.224	1.643	.207
DEPTHS	52893.448	2	26446.724	1.429	.253
DATES OF SAMPLING	8641.215	1	8641.215	.467	.499
2-WAY INTERACTIONS	100412.723	8	12551.590	.678	.707
VEGCOM X DEPTH	39808.601	4	9952.150	•538	.709
VEGCOM X DATE	27729.581	2	13864.791	.749	.480
DEPTH X DATE	32874.541	2	16437.271	.888	.420
3-WAY INTERACTIONS	62248.341	4	15562.085	.841	.508
VEGCOM X DEPTH X DATE	62248.341	4	15562.085	.841	.508
EXPLAINED	285028.175	17	16766.363	•906	•573
RESIDUAL	666292.460	36	18508.124		
TOTAL	951320.635	53	17949.446		

THREE FACTOR ANALYSIS OF VARIANCE FOR SOIL ORGANIC MATTER BY VEGETATION COMMUNITY, DEPTH, AND DATE OF SAMPLING (NORTH SIDE TELEPHONE CREEK 1983).

SOURCE OF VARIATION	SUM OF SQUARES	DF	MEAN SQUARE	F	SIGNIF OF F
MAIN EFFECTS	4104.825	5	820.965	11.006	.001*
VEGETATION COMMUNITIES	2586.414	2	1293.207	17.337	.001 #
DEPTHS	1518.221	2	759.111	10.177	.001*
DATES OF SAMPLING	•190	1	.190	.003	•960
2-WAY INTERACTIONS	424.540	8	53.067	.711	.680
VEGCOM X DEPTH	365.394	4	91.349	1.225	.318
VEGCOM X DATE	37.627	2	18.814	.252	.778
DEPTH X DATE	21.518	2	10.759	.144	.866
3-WAY INTERACTIONS	42.542	4	10.635	.143	.965
VEGCOM X DEPTH X DATE	42.542	4	10.635	.143	.965
EXPLAINED	4571.907	17	268.936	3.605	.001*
RESIDUAL	2685.287	36	74.591		
TOTAL	7257.193	53	136.928		

* SIGNIFICANT AT THE 0.95 PROBABILITY LEVEL.

.

THREE FACTOR ANALYSIS OF VARIANCE FOR WATER CONTENT BY VEGETATION COMMUNITY, DEPTH, AND DATE OF SAMPLING FOR SOILS (NORTH SIDE TELEPHONE CREEK 1983).

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
MAIN EFFECTS	18955.573	 5	3791.115	37.676	•001 *
VEGETATION COMMUNITIES	15573.936	2	7786.968	77.386	.001*
DEPTHS	3322.311	2	1661.156	16.508	.001*
DATE OF SAMPLING	59.325	1	59.325	•590	.448
2-WAY INTERACTIONS	1459.505	8	182.438	1.813	.107
VEGCOM X DEPTH	1275.731	4	318.933	3.170	.025
VEGCOM X DATE	130.545	2	65.272	.649	.529
DEPTH X DATE	53,229	2	26.615	.264	•769
3-WAY INTERACTIONS	7.711	4	1.928	.019	.999
VEGCOM X DEPTH X DATE	7.711	4	1.928	.019	•999
EXPLAINED	20422.788	17	1201.340	11.939	.001*
RESIDUAL	3622.480	36	100.624		
TOTAL	24045.268	53	453.684		

* SIGNIFICANT AT THE 0.95 PROBABILITY LEVEL.

THREE FACTOR ANALYSIS OF VARIANCE FOR SOIL PH BY VEGETATION COMMUNITY, DEPTH, AND DATE OF SAPMLING (NORTH SIDE TELEPHONE CREEK 1983).

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
AIN EFFECTS	5.545	<u>-</u> 5	1.109	7.504	.001*
VEGETATION COMMUNITIES	4.541	2	2.271	15.365	.001
DEPTHS	.848	2	.424	2.868	.070
DATES OF SAMPLING	•156	1	.156	1.054	.311
2-WAY INTERACTIONS	•579	8	.072	.489	.856
VEGCOM X DEPTH	.244	4	.061	.414	.798
VEGCOM X DATE	.260	2	.130	.881	.423
DEPTH X DATE	.074	2	.037	.249	.781
B-WAY INTERACTIONS	.065	4	.016	.110	.978
VEGCOM X DEPTH X DATE	.065	4	.016	.110	.978
EXPLAINED	6.188	17	•364	2.463	.011
RESIDUAL	5.320	36	.148		
COTAL	11.508	53	.217		

* SIGNIFICANT AT THE 0.95 PROBABILITY LEVEL.

APPENDIX F

ANALYSIS OF VARIANCE TABLES FOR THE SOUTH SIDE SOILS OF TELEPHONE CREEK

TWO FACTOR ANALYSIS OF VARIANCE FOR NITROUS OXIDE PRODUCTION BY VEGETATION COMMUNITY AND DEPTH FOR SOILS (SOUTH SIDE TELEPHONE CREEK 1983).

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
AIN EFFECTS	121.717	5	24.343	10.323	•001 *
VEGETATION COMMUNITIES	42.700	3	14.233	6.036	.010#
DEPTHS	79.016	2	39.508	16.753	.001#
2-WAY INTERACTIONS	66.905	6	11.151	4.728	.011*
VEGCOM X DEPTH	66.905	6	11.151	4.728	.011#
EXPLAINED	188.622	11	17.147	7.271	.001
RESIDUAL	28.299	12	2.358		
TOTAL	216.920	23	9.431		

* SIGNIFICANT AT THE 0.95 PROBABILITY LEVEL.

.

TWO FACTOR ANALYSIS OF VARIANCE FOR DENITRIFYING BACTERIA BY VEGETATION COMMUNITIES AND DEPTHS FOR SOILS (SOUTH SIDE TELEPHONE CREEK 1983).

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
AIN EFFECTS	10904817.231	 5	.218E+07	1.973	.155
VEGETATION COMMUNITIES	6794044.048	3	.226E+07	2.048	.161
DEPTHS	4110773.182	2	•206E+07	1.859	.198
2-WAY INTERACTIONS	13053367.284	6	.218E+07	1.968	.150
VEGCOM X DEPTH	13053367.284	6	.218E+07	1.968	.150
EXPLAINED	23958184.515	11	.218E+07	1.970	.130
RESIDUAL	13267478.250	12	.111E+07		
FOTAL.	37225662.765	23	.162E+07	1	

.

.

TWO FACTOR ANALYSIS OF VARIANCE FOR SULFATE-REDUCING BACTERIA BY VEGETATION COMMUNITY AND DEPTH FOR SOILS (SOUTH SIDE TELEPHONE CREEK 1983).

.

.

SUM OF		MEAN	S	IGNIF
SQUARES	DF	SQUARE	F	OF F
793270.340		158654.068	3.189	.046*
572639.157	3	190879.719	3.836	.039
220631.183	2	110315.591	2.217	.152
194694.215	6	32449.036	.652	.689
194694.215	6	32449.036	.652	.689
987964.554	11	89814.959	1.805	.162
597097.043	12	49758.087		
1585061.597	23	68915.722		
	SQUARES 793270.340 572639.157 220631.183 194694.215 194694.215 987964.554 597097.043	SQUARES DF 793270.340 5 572639.157 3 220631.183 2 194694.215 6 194694.215 6 987964.554 11 597097.043 12	SQUARES DF SQUARE 793270.340 5 158654.068 572639.157 3 190879.719 220631.183 2 110315.591 194694.215 6 32449.036 194694.215 6 32449.036 987964.554 11 89814.959 597097.043 12 49758.087	SQUARES DF SQUARE F 793270.340 5 158654.068 3.189 572639.157 3 190879.719 3.836 220631.183 2 110315.591 2.217 194694.215 6 32449.036 .652 194694.215 6 32449.036 .652 987964.554 11 89814.959 1.805 597097.043 12 49758.087

.

TWO FACTOR ANALYSIS OF VARIANCE FOR TOTAL HETEROTROPHIC AEROBIC BACTERIA, BY VEGETATION COMMUNITY AND DEPTH FOR SOILS (SOUTH SIDE TELEPHONE CREEK 1983).

SOURCE OF VARIATION	SUM OF SQUARES	DF	MEAN SQUARE	F	SIGNIF OF F
MAIN EFFECTS VEGETATION COMMUNITIES DEPTHS	8321986.437 5467923.250 2854063.187	5 3 2	.166E+07 .182E+07 .143E+07	1.056 1.156 .905	.431 .367 .430
2-WAY INTERACTIONS VEGCOM X DEPTH	9693955.812 9693955.812	6 6	.162E+07 .162E+07	1.025 1.025	•455 •455
EXPLAINED	18015942.250	11	.164E+07	1.039	.471
RESIDUAL	18921524.250	12	.158E+07		
TOTAL	36937466.500	23	.161E+07		

.

TWO FACTOR ANALYSIS OF VARIANCE FOR SOIL ORGANIC MATTER BY VEGETATION COMMUNITIES AND DEPTHS (SOUTH SIDE TELEPHONE CREEK 1983)

	SUM OF		MEAN		SIGNIF	
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F	
MAIN EFFECTS	16889.329	<u>-</u> 5	3377.866	65.853	.001*	
VEGETATION COMMUNITIES	13759.098	3	4586.366	89.413	.001#	
DEPTHS	3130.231	2	1565.115	30.513	.001*	
2-WAY INTERACTIONS	1394.399	6	232.400	4.531	•013 *	
VEGCOM X DEPTH	1394.399	6	232.400	4.531	.013*	
EXPLAINED	18283.728	11	1662.157	32.404	.001*	
RESIDUAL	615.530	12	51.294			
TOTAL	18899.258	23	821.707			

* SIGNIFICANT AT THE 0.95 PROBABILITY LEVEL.

•

61

TWO FACTOR ANALYSIS OF VARIANCE FOR SOIL WATER CONTENT BY VEGETATION COMMUNITIES AND DEPTHS (SOUTH SIDE TELEPHONE CREEK 1983).

	SUM OF		MEAN		SIGNIF
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
AIN EFFECTS	13604.761	5	2720.952	31.164	.001
VEGETATION COMMUNITIES	11429.935	3	3809.978	43.637	.001
DEPTHS	2174.826	2	1087.413	12.455	.001
2-WAY INTERACTIONS	1431.188	6	238.531	2.732	.065
VEGCOM X DEPTH	1431.188	6	238.531	2.732	.065
EXPLAINED	15035.948	11	1366.904	15.656	.001
RESIDUAL	1047.730	12	87.311		
TOTAL	16083.678	23	699.290		

* SIGNIFICANT AT THE 0.95 PROBABILITY LEVEL.

62

•

TWO FACTOR OF ANALYSIS OF VARIANCE FOR PH BY VEGETATION COMMUNITIES AND DEPTHS FOR SOILS (SOUTH SIDE TELEPHONE CREEK 1983).

	SUM OF		MEAN	SIGNIF	
SOURCE OF VARIATION	SQUARES	DF	SQUARE	F	OF F
MAIN EFFECTS	3.767	 5	•753	15.723	.001#
VEGETATION COMMUNITIES	3.341	3	1.114	23.243	.001*
DEPTHS	.426	2	.213	4.443	.036*
2-WAY INTERACTIONS	.378	6	.063	1.313	•323
VEGCOM DEPTH	•378	6	.063	1.313	•323
EXPLAINED	4.145	11	•377	7.863	.001#
RESIDUAL	•575	12	.048		
FOTAL	4.720	23	.205		

* SIGNIFICANT AT THE 0.95 PROBABILITY LEVEL.

•

.