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Abstract: Harmful cyanobacterial blooms (HCBs) can lead to water quality problems and 
adverse health effects in humans, livestock, wildlife, and pets. The Wyoming Department of 
Environmental Quality (WY DEQ), Wyoming Department of Health, and the Wyoming 
Livestock Board have identified many reservoirs across Wyoming that have experienced HCBs 
in recent years; and have increased from only a few water bodies in 2017 to >40 water bodies in 
2022 and 2023. Nutrients and climate have been identified as the primary drivers of blooms in 
other parts of the world, but research specifically targeted toward this area of the United States 
was needed to identify, predict, and manage HCBs in Wyoming. Specifically, we proposed to 
generate knowledge specific to Wyoming reservoirs to accurately: 1) verify the effectiveness of 
remote sensing data to identify HCBs, 2) predict what environmental conditions lead to HCBs, 3) 
identify nutrient management targets to prevent HCBs. Our field sampling campaign also 
allowed us to explore impact of blooms on reservoir food webs and water quality in Wyoming 
lakes and reservoirs.  

MS student Sam Sillen’s thesis focused on the remote sensing aspects of this project, 
aiming to understand long-term trends in chlorophyll in lakes across the Intermountain West 
from the 1980s-present. He also conducted field sampling to verify the use of remote sensing 
tools for detecting blooms in Wyoming. Our results suggest that lake algal biomass is not 
increasing in most lakes since the mid 1980's, suggesting that the increasing number of algal 
blooms in Wyoming is more likely a result of increased awareness than widespread 
eutrophication. However, these estimates focus on measurements for lake centroids, not beaches, 
and further investigations should identify whether nearshore areas have different patterns. We 
also found that the EPA CYaN product used by WY DEQ is generally effective to identify 
blooms, and most errors are "false positive", where satellite imagery indicates a bloom but no 
bloom exists in field data collections.  

Other aspects of this research are in progress, including an analysis of the timing of 
nitrogen and phosphorus loading to Boysen Reservoir (led by collaborating PhD student Linnea 
Rock), and analyses of how blooms influence lake food webs (led by project PhD student 
Ashleigh Pilkerton). This project trained two graduate students (Samuel Sillen, MS 2022 and 
Ashleigh Pilkerton, PhD in progress), and six undergraduate students in field, laboratory, and 
computational approaches to research. The first manuscript from Sillen’s thesis is in revision to 
be published at Water Resources Research, and a second manuscript is in preparation, and 
Pilkerton’s in progress dissertation will include two manuscripts related to this work. We have 
presented this work at a diverse suite of local, state, national and international conferences, 
including the Wyoming Watershed Conference, the Society for Freshwater Science, and the 
American Geophysical Union. 



Students trained under this project, including completed or in progress thesis/dissertations 
 
Samuel Sillen      MS Zoology, December 2022 
 

Sam is currently a Research Analyst for the University of Pittsburgh 
Thesis title: Tracking harmful algal bloom (HAB) trends in Wyoming lakes using remote 

 sensing 
 

Ashleigh Pilkerton     PhD Ecology, Expected 2024 
 
Ashleigh’s dissertation generally focuses on water quality issues in Wyoming, and her 
work is split between a previous WRP project related to sediment and fisheries and this 
project. As part of this project, she has focused on impacts of HCBs on lake food webs. 
Thesis title: Water quality perturbations in aquatic ecosystems: Ecological response and 
management implications 

 
Macy Jacobson     Undergraduate, Summer 2021 

 
Macy assisted with Sam Sillen’s field sampling in lakes across Wyoming to verify 
satellite-derived estimates of cyanobacterial density with field data. She graduated from 
UW in 2023. 

 
Cortney Borer     Undergraduate, Summer 2021 
 

Cortney was funded by the McNair Scholars program at UW and she assisted with lab 
experiments led by Ashleigh that tested how nutrient amendments influenced 
cyanobacterial community composition and toxin production. 

 
Taylor Skiles      Postgraduate, 2022-2023 
 
 Taylor (UW 2022 graduate) assisted with plankton and nutrient sample processing 
 
Darby McMartin     Undergraduate, 2022-2023 
 
 Darby (UW 2022 graduate) assisted with plankton and fish sample processing 
 
Trevor Knowles     Undergraduate, 2022-2023 
 
 Trevor (current UW student) assisted with plankton sample processing  
 
Foss Williams      Undergraduate, 2023 
 
 Foss (current UW student) assisted with plankton sample processing 
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News Features: 
 
“Toxic blooms again prompt health worries, warnings,” Andromeda Erikson, WyoFile, August 

19, 2022 
 
“Researchers look for clues as toxic blooms plague Wyo waters” Christine Peterson, WyoFile. 

September 14, 2021. 
 
“The toxic mystery of Wyoming’s backcountry cyanobacteria blooms” Mike Koshmrl, WyoFile. 

October 6, 2023. 
 
Progress: 
 
The primary goals of our project were to use satellite data to investigate long-term trends in lake 
productivity, and to conduct field sampling in lakes and reservoirs across Wyoming to verify the 
effectiveness of EPA CyAN estimates of cyanobacterial density with field samples. Both of 
those projects have been completed, and the motivation, methods, results, and implications are 
described in two attachments. First a publication resulting from the first chapter of Sam Sillen’s 
MS thesis (preprint in Appendix A) describes trophic state trends for lakes across the 
intermountain west. The results suggest no evidence of widespread eutrophication across the 
region, but rather that the majority of lakes are not changing and more are improving in water 
quality (i.e., becoming more oligotrophic since the mid-1980s) than are declining (i.e., becoming 
more eutrophic). Second, the second chapter of Sillen’s thesis (Appendix B) is still in preparation 
to be published, with an anticipated submission date in early 2024. This work details our field 
sampling across Wyoming that allowed us to verify whether cyanobacterial densities from field 
samples match cyanobacterial density estimates from the EPA CyAN remote sensing product 
that is used by WY DEQ. Our result reflect a strong relationship between field and satellite data, 
and that most mismatches are false positives, where the CyAN product suggests a bloom may be 
occurring but the concurrently collected field samples have lower cyanobacterial densities. 
 
Our project also includes ongoing research by current graduate students. First, PhD Student 
Ashleigh Pilkerton took advantage of extensive field surveys in Sillen’s thesis and repeated those 
surveys in Summer 2021. She used those samples in two chapters of her dissertation, which 
focus on the food web implications of HCBs in Wyoming lakes and reservoirs. The motivation, 
methods, and anticipated results for these chapters are described in her dissertation proposal 
(Appendix C). 
 
All three graduate students involved in our project have contributed to the other objective of our 
work, which was to understand how timing and intensity of nutrient loading to Boysen Reseroir 
might influence cyanobacterial bloom development. First, Pilkerton conducted lab experiments 
on water from Boysen in Summer 2021, where she added different amounts of nitrogen and 
phosphorus to bottles and evaluated the algal community response. This experiment was difficult 
to maintain in the laboratory and led us to conclude that a field data approach may be more 
effective to understand this issue. Sillen began to run nutrient models to understand N and P 
loading from the three major tributaries to Boysen Reservoir, but a lack of discharge data from 
non-functional USGS gauges made it difficult to complete this before his defense. Because of 



this, he passed the project to Collins Lab PhD student Linnea Rock, who is not funded by our 
project but has similar interests in aquatic biogeochemistry and water quality management. The 
second chapter of Rock’s dissertation is in progress, and will use tributary nutrient samples, 
tributary discharge, and in-lake data to investigate priority questions defined in collaboration 
with WY DEQ staff. The proposal and preliminary results for this chapter are included in her 
PhD proposal for this chapter (Appendix D). 
 
Summary and Significance 
 Our project applied novel methods for investigating the utility of remote sensing tools for 
understanding long-term trends and detection of harmful cyanobacterial blooms in Wyoming 
lakes and reservoirs. The results of this work suggest that the EPA CyAN estimates of bloom 
density are likely useful for surveillance in Wyoming, and that there is not strong evidence of 
widespread eutrophication or major shifts in lake trophic state since the 1980s. We continue to 
explore the connection between nutrient loading and in-lake processes, as well as the influence 
of HCBs on reservoir food webs in ongoing projects. This initial HCB-related project led our 
team to pursue a new WRP project (2023-2026) in which we will also continue to explore the 
connection between lake and bloom characteristics and cyanotoxin production. 
 
Appendices: 
 
Appendix A: Preprint version of Sam Sillen’s first MS chapter. This manuscript describes multi-
decadal trends in lake trophic state across Wyoming and surrounding states. A revision has been 
submitted to Water Resources Research. 
 
Appendix B: Sam Sillen’s second MS chapter, describing our field sampling in lakes across 
Wyoming to verify satellite derived HCB estimates. 
 
Appendix C: Ashleigh Pilkerton’s PhD proposal for the two chapters related to this project 
(3&4). 
 
Appendix D: Linnea Rock’s PhD proposal for the chapter related to Boysen Reservoir nutrient 
loading and data analysis. 
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Long-term trends in productivity across Intermountain West lakes
provide no evidence of widespread eutrophication

Samuel James Sillen1, Matthew Richard Voss Ross2, and Sarah Collins1

1University of Wyoming
2Colorado State University

April 11, 2023

Abstract

Eutrophication represents a major threat to freshwater systems and climate change is expected to drive further increases in

freshwater primary productivity. However, long-term in-situ data is available for very few lakes and makes identifying trends and

drivers of eutrophication challenging. Using remote sensing data, we conducted a retrospective analysis of long-term trends in

trophic status across the Intermountain West, a region with understudied water quality trends and limited long-term datasets.

We found that most lakes (55%) were not exhibiting shifts in trophic status from 1984-2019. Our results also show that increases

in eutrophication were rare (3% of lakes) during this period, and that lakes exhibiting negative trends in trophic status were

more common (17% of lakes). Lakes that were not trending occupied a wide range of lake and landscape characteristics, whereas

lakes that were becoming less eutrophic tended to be in more heavily developed catchments. Our results highlight that while

there are well-established narratives that climate change can lead to more eutrophication of lakes, this is not broadly observed

in our dataset, with more lakes becoming more oligotrophic than lakes becoming eutrophic.

Hosted file

959814_0_art_file_10846034_rsgr0g.docx available at https://authorea.com/users/603290/
articles/633712-long-term-trends-in-productivity-across-intermountain-west-lakes-
provide-no-evidence-of-widespread-eutrophication

Hosted file

959814_0_supp_10846026_rs3r0t.docx available at https://authorea.com/users/603290/articles/
633712-long-term-trends-in-productivity-across-intermountain-west-lakes-provide-no-
evidence-of-widespread-eutrophication

Hosted file

959814_0_supp_10846027_rspr0t.docx available at https://authorea.com/users/603290/articles/
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evidence-of-widespread-eutrophication
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Key Points: 12 
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Abstract 32 

Eutrophication represents a major threat to freshwater systems and climate change is expected to 33 

drive further increases in freshwater primary productivity. However, long-term in-situ data is 34 

available for very few lakes and makes identifying trends and drivers of eutrophication 35 

challenging. Using remote sensing data, we conducted a retrospective analysis of long-term 36 

trends in trophic status across the Intermountain West, a region with understudied water quality 37 

trends and limited long-term datasets. We found that most lakes (55%) were not exhibiting shifts 38 

in trophic status from 1984-2019. Our results also show that increases in eutrophication were 39 

rare (3% of lakes) during this period, and that lakes exhibiting negative trends in trophic status 40 

were more common (17% of lakes). Lakes that were not trending occupied a wide range of lake 41 

and landscape characteristics, whereas lakes that were becoming less eutrophic tended to be in 42 

more heavily developed catchments. Our results highlight that while there are well-established 43 

narratives that climate change can lead to more eutrophication of lakes, this is not broadly 44 

observed in our dataset, with more lakes becoming more oligotrophic than lakes becoming 45 

eutrophic.  46 

Plain Language Summary 47 

Lakes are often classified by their productivity. Low productive lakes generally represent deep 48 

lakes with low amounts of algae. Whereas lakes with high levels of productivity support more 49 

plant growth and have higher amounts of algae. The accumulation of nutrients in freshwater 50 

systems often results in increases in productivity and can lead to the development of algal 51 

blooms. Algal blooms are a major concern due to their threat to ecosystem health, recreation, and 52 

drinking water sources. Yet the lack of long-term field data across large scales has resulted in a 53 

limited understanding of 1) what factors are driving productivity trends and the development of 54 

algal blooms across regions, and 2) are increasing trends representative of widespread 55 
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intensification or an increase in awareness and reporting. Therefore, there is a pressing need to 56 

effectively monitor and understand these trends in order to inform management actions that 57 

address their frequency and intensity. Here, we use data obtained from satellite imagery from 58 

1984 - 2019 to document lake productivity trends in 1,169 lakes across the Intermountain West. 59 

We show that substantial increases in productivity were rare, and that the majority of lakes have 60 

not undergone widespread change.  61 

1 Introduction 62 

Widespread eutrophication is a global phenomenon that threatens water quality, 63 

recreational industries, and ecosystem function (Paerl et al., 2001; Gatz, 2020; Amorim and 64 

Moura, 2021). A common outcome of eutrophication is an increase in the biomass of 65 

phytoplankton, both algae and cyanobacteria, in freshwater, transitional, and ocean environments 66 

(Anderson et al., 2008; Hudnell, 2010; Wurtsbaugh et al, 2019). In many cases, this rapid and 67 

excessive growth can become severe and lead to the development of Harmful Algal Blooms 68 

(HABs) (Smith, 2003; Heisler et al. 2008). HABs are of particular concern due to the threats they 69 

pose to human health and drinking water sources (Fleming et al., 2002; Falconer and Humpage 70 

et al., 2005; Christensen and Khan, 2020). Thus, the wide-ranging effects that eutrophication and 71 

HABs have on aquatic systems and their threat to human health have highlighted the need to 72 

understand the factors which drive them.  73 

 Generally, eutrophication and algal blooms are attributed to excessive loading of 74 

nitrogen (N) and phosphorus (P) as well as high water temperatures (Rejmankova and 75 

Komarkova, 2005; Paerl and Paul, 2012; Gobbler et al. 2016; Beaver et al. 2018). However, in 76 

shallow lakes, warmer temperatures and higher light absorption have been found to be more 77 

significant drivers of productivity (Kosten et al., 2012). In other words, the combination of 78 



manuscript submitted to Water Resources Research 

 

factors that drive rapid increases in lake productivity may differ between individual water bodies 79 

or geographic regions, hence smaller and more focused state and regional scale studies may be 80 

more useful in describing changes in lake productivity dynamics (Oleksy et al., 2022).  81 

Large scale studies have highlighted that water quality trends are context dependent and 82 

vary across regions (Beaver et al., 2018). However, some regions with unique landscape features 83 

remain understudied regarding lake productivity trends. For example, the Intermountain West 84 

region (including the US states Colorado, Idaho, Montana, Utah, and Wyoming) has very 85 

different hydrological dynamics and landscape features compared with other regions, yet water 86 

quality trends remain mostly undocumented. The region undergoes quick wet-dry seasonal 87 

transitions, with most of the streamflow generated by snowmelt (Bales et al., 2006). Higher 88 

gradients in temperature and precipitation with elevation make hydrologic processes significantly 89 

different compared with low-elevation regions (Bales et al., 2006). Land use in this region also 90 

differs, with substantial amounts of grassland pasture and range contributing to increased organic 91 

nutrient loading to streams and rivers (Agouridis et al., 2005).   92 

An increase in awareness and reporting of HABs in the Intermountain West suggests that 93 

lakes in the region may be becoming more eutrophic, yet our understanding of lake productivity 94 

trends is very limited. As nation-wide research and understanding of HABs has grown, so have 95 

management and sampling plans, educational materials, and overall public awareness (Hudnell et 96 

al. 2010). However, this increase in awareness and reporting has the potential to create a 97 

perception that blooms are already increasing in intensity and frequency (Hallegraeff et al., 98 

2021).  Recent work in the region highlights that lakes are experiencing roughly equal trends of 99 

changing from blue to green or changing green to blue, indicating there is not overwhelming 100 

evidence that they are getting more eutrophic, where eutrophic lakes are generally more green 101 
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(Oleksy et al., 2022). It remains unclear whether this is a result of representative increases in 102 

intensity or a result of heightened monitoring. Therefore, retrospective data analyses and long-103 

term monitoring are needed to identify consistent productivity trends (Hudnell, 2008), 104 

particularly in understudied regions like the Western US.   105 

Remote sensing and long-term satellite imagery create opportunities to address key 106 

research gaps surrounding what factors are driving freshwater productivity across regions. In-situ 107 

sampling methods are often limited by resources such as time and funding. Therefore, in-situ 108 

water quality data tends to be focused on relatively large lakes (> 20 ha) and long-term records 109 

tend to be rare (Stanley et al. 2019). Importantly, leveraging remote sensing data can address 110 

water quality dynamics over large spatial and temporal scales where in situ data is lacking (Topp 111 

et al. 2020). Remote sensing data with high spatial and temporal coverage are also useful to 112 

understand how global change is affecting productivity and bloom dynamics (Harvey et al. 2015; 113 

Ho et al., 2017; Seegers et al. 2021). These tools can be used to determine water quality 114 

parameters in freshwater systems such as chlorophyll-a (Boucher et al., 2018; Kuhn et al., 2019; 115 

Papenfus et al., 2020), suspended sediments (Pavelsky and Smith, 2009), and organic matter 116 

(Kutser et al., 2005; Slonecker et al., 2016).  117 

In this study, we address two gaps in our understanding of lake productivity dynamics in 118 

the Intermountain West. Specifically, we aimed to identify 1) the historical prevalence of 119 

eutrophic lakes and whether this is an  increasing trend of eutrophication, and 2) the drivers and 120 

spatial distribution of changes in trophic state. We use remote sensing imagery and in-situ 121 

chlorophyll-a data, covering 1984-2019, to predict chlorophyll-a and lake trophic state based 122 

solely on satellite imagery. This approach allowed us to document productivity trends in 1,169 123 

lakes over 35 years. By increasing the level of understanding of historical trends in lake 124 
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productivity and their drivers in this region, our analysis can also shed light on the intensification 125 

of algal blooms in lakes and provide important information for water quality management. 126 

2 Materials and Methods 127 

2.1 Data Sources and Processing  128 

 129 

Our analysis used various remote sensing, water quality, lake and landscape features, and 130 

climate datasets. We opted for a machine-learning approach that uses paired satellite reflectance 131 

from Landsat observations and in-situ water quality data. We acquired Landsat data and in-situ 132 

chlorophyll-a samples for model training from the AquaSat dataset (Ross et al., 2019). AquaSat 133 

joins Landsat Tier 1 surface reflectance to water quality samples from the Water Quality Portal 134 

(Read et al. 2017) and LAGOS-NE (Soranno et al. 2017) that occurred ± 1 day of a Landsat 135 

observation. We filtered AquaSat to only include observations over the Intermountain West 136 

region and with Landsat scenes with less than 50% cloud cover. The resulting dataset included 137 

1,340 observations across 249 lakes in the region. Reflectance values across the three different 138 

Landsat satellites used (5, 7, and 8) were standardized using the methodology outlined in 139 

Gardner et al. (2021). We then identified various open-source datasets that captured 140 

environmental drivers we hypothesized might be important for predicting chlorophyll-a. We 141 

merged Lake characteristics and catchment level metrics to our training dataset from the LakeCat 142 

(Hill et al., 2018) and LAGOS-US (Cheruvelil et al., 2021), and HydroLAKES (Messager at al., 143 

2016) datasets. Initially we joined lakes in the training set to corresponding lake polygons 144 

included in NHDPlusV2. LakeCat, LAGOS-US, and HydroLAKES datasets were then added 145 

through common NHD identifiers. We selected metrics that were derived from these datasets 146 

based on their potential to impact water quality (Table S1).  147 
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Daily surface water temperature and corresponding weather data (wind speed) were also 148 

included in our model development. We extracted daily water temperature from Willard et al. 149 

(2022), which includes estimated daily surface water temperature for 185,549 lakes across the 150 

US. In addition to daily surface temperature, we calculated prior 14-day mean temperatures for 151 

all 1,340 observations included in our training set. Then, we joined 14-day mean temperature and 152 

meridional wind speed to our training set using common NHD identifiers and the date of 153 

observation.  154 

Using the same methods, we built our prediction dataset using LimnoSat-US (Topp et al., 155 

2021). LimnoSat-US includes Landsat Collection 1, Tier 1 surface reflectance for lakes greater 156 

than 10 hectares in the U.S. spanning 1984 – 2020. Surface reflectance values represent the 157 

median surface reflectance of a 120-meter buffer of the “deepest point” of a lake polygon. This 158 

“deepest point” can be defined as the center of the largest circle that can fit within a lake 159 

polygon. We joined the lake characteristics, catchment level metrics, and climate data described 160 

above to our prediction dataset, resulting in 1,264,355 observations across 2,596 lakes in the 161 

Intermountain West. 162 

Lastly, we defined categories for three trophic states based on the following chlorophyll-a 163 

thresholds: oligotrophic (0 - 2.6 ug /L), mesotrophic (2.7 – 7 ug / L), and eutrophic ( > 7 ug / L). 164 

These thresholds were inspired by the criteria outlined in the National Lakes Assessment (U.S. 165 

Environmental Protection Agency, 2009). This categorical approach was taken because 166 

predicting chlorophyll-a concentrations in freshwater systems with remote sensing has been 167 

notably challenging, particularly with Landsat imagery (Salem et al., 2017; Smith et al. 2021). 168 

Landsat bands are relatively broad with a low signal-to-noise ratio, often resulting in predictions 169 

of chlorophyll-a with high levels of uncertainty (Matthews, 2011). Furthermore, the accurate 170 
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prediction of chlorophyll-a is affected by complex optical conditions in various waterbodies with 171 

higher levels of turbidity (Ruddick et al. 2001; Alvain et al. 2005). These challenges were 172 

addressed by focusing on broad, trophic level predictions of chlorophyll-a. 173 

2.2 Model Development 174 

 175 

We developed an Extreme Gradient Boosting (XgBoost) model to classify categories of 176 

chlorophyll-a. These models build on machine learning concepts such as decision trees and 177 

ensemble learning (Cheng and Guesterin, 2016). Decision trees represent a supervised learning 178 

approach where training features are split into internal nodes and evaluated to form 179 

homogeneous groups (terminal nodes) (Kotsiantis, 2013). Decision trees can comprise a single 180 

univariate classifier or the combination of multiple classifiers, known as an ensemble classifier. 181 

Gradient boosting is a method of ensemble learning where a series of models are built with 182 

weights assigned to misclassified observations. Misclassified observations from the previous 183 

model are used as training data for the next, and the result is an ensemble classifier that 184 

represents an aggregation of individual classifiers and minimizes overall error (Pal, 2007).  185 

We used a combination of optical and climatic variables to build a predictive model for 186 

chlorophyll-a. Specifically, we calculated multiple band ratios that have been shown to explain 187 

variation in phytoplankton blooms (Ho et al., 2017). We used a 14-day average of lake surface 188 

temperature and daily meridional wind speed as additional predictor variables. We explored the 189 

addition of static predictor variables (such as lake elevation or watershed land use) yet refrained 190 

from including these in our final model because recent studies have shown that static predictor 191 

variables can act as ‘identifiers’ and lead to overfitting and over-optimistic evaluation metrics 192 
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(Meyer et al., 2018). Thus, we selected only continuous predictor variables that we would not 193 

expect to lead to substantial overfitting (Table 1).  194 

 195 

Table 1. Predictor variables used for model training. 196 

Predictor variable Description 

Blue Surface reflectance of blue band 

Dwl Dominant wavelength 

Nir Surface reflectance of Nir band 

Swir2 Surface reflectance of Swir2 band 

Red / Blue Red / Blue 

Red / Nir  Red / Nir 

Nir / Red.  Nir / Red 

Green / Blue  Green / Blue 

Nir Sac (Nir – 1.03) * Swir1 

Nir – Red Nir - Red 

Red - Green Red - Green 

EVI 2.5*((Nir – Red)/(Nir + ((6*Red) – (7.5*Blue)) + 1)) 

GCI Nir / (Green – 1) 

Mean 14-day Temp 14- day average surface water temperature (deg. C) 

Wind Meridional wind speed (m/s) 
 197 

We partitioned our training set to reserve 20% for model testing and evaluation and 80% 198 

for model training and parameter tuning. XgBoost models include a wide range of 199 

hyperparameters and are one of the main tools used to reduce model variance. Hyperparameters 200 

were tuned by first establishing a grid of conservative values (to prevent overfitting) and then 201 

extracting the hyperparameters that resulted in the lowest validation loss. After training the final 202 
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model with these hyperparameters, model performance was evaluated through a confusion 203 

matrix which shows the relative accuracy of predictions across different categories. 204 

2.3 Data Analysis 205 

 206 

To summarize lake trends and capture long-term changes in chlorophyll-a, we analyzed 207 

the percent occurrence of trophic state observations. First, lakes included in our trend analysis 208 

had to have at least two summer observations (June – September) for each year (1984-2019). 209 

More conservative filtering criteria, such as at least 5 observations per year, was explored yet 210 

had negligible effects on overall results and resulted in fewer lakes being included in our 211 

analysis. We specifically focused our analysis on summer observations to limit the effect that 212 

snow and ice may have on our results. As a result, 1,169 lakes were included in our analysis 213 

based on these criteria. For each summer, the percent occurrence of each trophic state 214 

observation was recorded. Then, the average percent occurrence for each trophic state was 215 

recorded across two time periods: 1984 – 2004; and 2005 – 2019. Lastly, lakes were grouped 216 

into the following categories based on the shift (if any) in trophic state during these two time 217 

periods:  218 

1) No trend: Change in % oligotrophic, % mesotrophic, and % eutrophic was less  219 

  than 10% across all three categories (Figure 1A) 220 

2) Increasing in % Eutrophic: Number of eutrophic observations increased by  221 

  10% or more while the number of oligotrophic observations decreased by 10% or  222 

  more (Figure 1B) 223 

3) Increasing in % Oligotrophic: Number of oligotrophic observations increased 224 

by 10% or more while the number of eutrophic observations decreased by 10% or 225 

more (Figure 1C).  226 
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 227 
Figure 1. Examples of three possible trend categories based on the trends in % occurrence of 228 
oligotrophic, mesotrophic, and eutrophic observations. Each panel included in this plot 229 
represents the trends observed across three different lakes. 230 
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Lastly, trend-specific drivers were examined by determining how lake catchment, 231 

hydrologic, and climate metrics explained differences across trends. We calculated variable 232 

importance across trend categories by applying a random forest model using the randomForest 233 

package in R (Liaw and Wiener, 2002). With this approach, we were able to classify the 234 

reduction in accuracy that occurred across all three responses when certain variables were 235 

excluded. All data processing, model development, statistical analysis, and visualizations were 236 

done in Program R (R Core Team, 2022). 237 

3 Results 238 

3.1 Model Performance 239 

 240 

Model performance was evaluated through a confusion matrix as well as various 241 

accuracy and error metrics (Table 2, Figure 2). In the range of oligotrophic values (0 - 2.6 ug/L), 242 

observations had a balanced accuracy of 78% and only 7% of these observations were 243 

misclassified as eutrophic (Table 2). Mesotrophic observations (2.7 - 7 ug/L) represented the 244 

range of values with the lowest prediction accuracy. Our model reported a balanced accuracy of 245 

69% for mesotrophic classifications (Table 2). The most common misclassification among 246 

mesotrophic predictions was with observed classes that were oligotrophic (30%) (Figure 2). 247 

Lastly, eutrophic observations (> 7 ug/L) represented the class with the highest prediction 248 

accuracy (85%) (Table 2). In addition, there was relatively low prediction error with oligotrophic 249 

classes (6%). Overall, our model reported a global accuracy of 70% with a 95% confidence 250 

interval of between 63% and 76% (Table S2). 251 

 252 
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Table 2. Model evaluation metrics for each predicted class.  253 

Statistic Oligotrophic Mesotrophic Eutrophic 

Sensitivity  0.7500 0.5397 0.8426 

Specificity 0.8167 0.8440 0.8912 

Neg Pred Value 0.8235 0.8041 0.9291 

Pos Pred Value 0.7412 0.6071 0.7460 

Prevalence 0.4118 0.3088 0.2794 

Balanced Accuracy 78.33% 69.18% 85.79% 

 254 

 255 
Figure 2. Confusion matrix illustrating the frequency and accuracy of predictions across all three 256 
trophic states. The most common misclassification was among mesotrophic predictions that had 257 
observed classes of oligotrophic (middle panel, far left). Overall, our model had a global 258 
accuracy of 70% with a 95 % confidence interval of 63% - 76%. 259 
 260 
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The integration of fine-scale, daily temperature and climate features significantly 261 

improved our ability to predict across these trophic states. In terms of feature importance 262 

measured by model gain, mean 14 – day surface water temperature and meridional wind speed 263 

were the second and fourth most important predictor variables, behind the band ratio of blue to 264 

green and dominant wavelength (Figure 3). In addition, model scenarios without climate 265 

variables reported global accuracies of around 63%, with a 95% confidence interval of between 266 

57 – 69%.  267 

Figure 3. Feature importance, measured as model gain, for the predictor variables included in 268 
model development. 269 

 270 

 271 
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3.2 Productivity Trends 272 

 273 

Most lakes included in this study did not show trends in chlorophyll-a (Figure 4). Overall, 274 

a total of 651 lakes (55%) did not meet our 10% thresholds for shifts across all three categories  275 

More than half of the lakes that weren’t changing from 1985-2019 were oligotrophic lakes with 276 

most observations classified as oligotrophic. In contrast, 24% of lakes within this category were 277 

eutrophic lakes. The remaining lakes (16%) in this trend category likely represent a more 278 

complex, mesotrophic lake status. 279 

The second most common trend we observed were lakes that had substantial shifts in 280 

trophic status by becoming more oligotrophic. We found that 17% of lakes switched from 281 

predominantly being classified as eutrophic to being classified primarily as oligotrophic. Most of 282 

these lakes tended to be dominated by eutrophic observations, suggesting that they are eutrophic 283 

lakes that are improving in water quality. Few lakes showed evidence of extreme (>30%) shifts 284 

in oligotrophic observations. In other words, shifts in oligotrophic observations within this lake 285 

trend was relatively moderate (10 - 30%, Figure S1).  286 

Lastly, a minority (3%) of all lakes were shifting towards becoming more eutrophic. 287 

Interestingly, these trends were equally distributed across lakes with high levels of eutrophic 288 

observations and those with high levels of oligotrophic observations. In other words, lakes that 289 

were predominately oligotrophic and were becoming more eutrophic were equally as common as 290 

lakes that were eutrophic and were intensifying in this way. The magnitude of change was 291 

similar to that of lakes that trended oligotrophic, with little evidence of extreme shifts in 292 

eutrophic observations (Figure S1). 293 

 294 
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 295 

Figure 4. Spatial distribution of trophic state trends across the five states included in this 296 
analysis. 297 
 298 
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The remaining lakes that were included in this analysis and did not fit into these rigid 299 

categories reflect various levels of trophic state change. For example, 7% of lakes could be 300 

described as becoming more oligotrophic and less mesotrophic by the same thresholds outlined 301 

in Figure 1. In contrast, few lakes (1%) were found to be becoming more mesotrophic during this 302 

time. The 12% of lakes that did not fit into these categories displayed slight trends in certain 303 

categories (such as becoming more oligotrophic), but did not satisfy thresholds for trends in 304 

other categories such that we would be confident of defining clear trends in productivity. 305 

3.3 Drivers of Trends 306 

 307 

Our random forest model was able to identify partially important variables for explaining 308 

trends in productivity. Lake catchment data such as 30 year normal mean temperature, base flow 309 

index, and mean runoff were more important in explaining overall lake trends (Figure 5). 310 

Specifically, lakes becoming more oligotrophic tended to have longer residence times and were 311 

located in catchments that were generally less forested and more developed (Figure 6). Whereas, 312 

lakes that were becoming more eutrophic also tended to be less forested but were located in 313 

smaller catchments and were shallower on average (4.13 m) compared with lakes that were not 314 

trending (9.12 m). Lastly, a number of climate and landscape metrics displayed a high level of 315 

variation across trophic state trends, however some of these metrics had significant cross 316 

correlation with other variables (Figure S2). 317 

 318 

 319 

 320 

 321 
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 325 

Figure 6. Mean decrease in accuracy of the top five variables used to explain each trend 326 
category in the random forest model. The mean decrease in accuracy describes variable 327 
importance by quantifying how much accuracy is lost by excluding that particular variable.  328 
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4 Discussion 329 

Eutrophication and the development of algal blooms are global phenomena that threaten 330 

aquatic systems. Given the effects of global change and the expected increasing intensity of these 331 

disturbances, there has been a substantial level of interest in investigating recent productivity 332 

trends in lakes and reservoirs. Our analysis found that most lakes in the Intermountain West 333 

region have remained relatively static in terms of their productivity over the last 35 years. In 334 

addition, we found that a greater percentage of lakes were improving with regards to 335 

productivity, as opposed to becoming more eutrophic.  336 

4.1 Productivity Trends 337 

 338 

The majority of lakes included in this analysis showed no evidence of substantial changes 339 

in trophic state and supplement other regional-scale analyses of in-situ chlorophyll-a data. This is 340 

consistent with previous analyses demonstrating that magnitude, severity, and duration of algal 341 

blooms are not intensifying in US lakes (Wilkinson et al. 2022). Similarly, long-term trends of 342 

Florida lakes have indicated that a majority (73%) have not shown evidence of changes in 343 

chlorophyll-a and trophic state (Canfield et al., 2018). While there is a growing concern of 344 

eutrophication and HABs becoming pervasive in the Intermountain West, our results build on 345 

recent studies that suggest no indication of widespread intensification in algal blooms. Rather, 346 

the large percentage of lakes not trending combined with the presence of algal blooms across the 347 

region suggest a historical baseline of eutrophication and that blooms could have predated the 348 

1980s. 349 

Our analysis revealed that, in fact, the smallest percentage (3%) of lakes were trending 350 

eutrophic. Global analyses of long-term phytoplankton blooms have shown a substantial (68 %) 351 

number of lakes to be increasing in bloom intensity (Ho et al., 2019). However, only 5% of U.S. 352 
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lakes have been shown to be increasing in the same metric over the past 40 years (Wilkinson et 353 

al., 2022). In addition, a minority of lakes (13%) in the Rocky Mountain region have shown to be 354 

shifting from blue to greener wavelengths during this time (Oleksy et al., 2022). With our 355 

analysis, we show that concerns regarding the widespread intensification of algal blooms are not 356 

captured in our analysis of chlorophyll-a and trophic state.  357 

Our analysis of lakes that were trending eutrophic revealed several important hydrologic 358 

and climate factors associated with eutrophication. Specifically, 30-year normal mean 359 

temperatures tended to be higher among lakes trending eutrophic and an important variable for 360 

explaining overall trends. In addition, hydrologic variables such as lake depth and lake area 361 

revealed that lakes trending eutrophic tended to be smaller and shallower than other lakes. Small, 362 

shallow lakes are often more productive than deeper lakes because of the effects that lake 363 

morphology can have on ecosystem structure (Richardson et al., 2022; Henderson et al., 2021). 364 

Shallow lakes have also been shown to be more sensitive to climate conditions (Mooij et al., 365 

2007) and could explain the interaction between climate and depth driving these trends.  366 

In contrast, 19 % of study lakes were found to be improving by simultaneously becoming 367 

less eutrophic and more oligotrophic. Lake-specific characteristics reveal that lakes improving in 368 

water quality were in more developed and less forested catchments, as well as at lower 369 

elevations. These results are consistent with studies on water clarity (Topp et al., 2021), lake 370 

color (Oleksy et al., 2022), and chlorophyll-a (Wilkinson et al., 2022), that highlight 371 

improvements in water quality metrics over the same time period. These trends have been 372 

hypothesized to be the result of management actions or restoration projects (Wilkinson et al., 373 

2022), although we lacked the information to make conclusions about the mechanisms of these 374 

trends. However, concentrations of nutrients across urban watersheds have significantly 375 
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decreased over the past 20 years and have been directly attributed to the Clean Water Act (Stets 376 

et al., 2020). Given the greater variable importance of developed land use across lakes becoming 377 

more oligotrophic (3.9 compared to 1.6 among no trend lakes), it is possible that water quality 378 

implementation projects have had a positive effect on mitigating eutrophication in the region.   379 

Despite the 35-year study period and wide range of lakes involved, the remote sensing 380 

data used in this study may not capture various spatial and temporal characteristics of 381 

eutrophication or algal blooms. Algal blooms tend to have high temporal and spatial variance in 382 

the short term, as wind dynamics drive the spatial distribution of phytoplankton blooms (Bosse et 383 

al., 2019). Therefore, the 16-day return period for Landsat observations may not capture short-384 

term peaks in chlorophyll-a. Furthermore, some images can be unusable due to extensive cloud 385 

cover and may extend the period between observations up to months at a time. However, given 386 

that our analysis includes 35 years of data across 1,169 lakes, we would expect to capture 387 

widespread eutrophication and the spatial clustering of eutrophication trends if it were present.   388 

Additionally, Landsat’s long-term record restricted us to coarse analyses of chlorophyll-a 389 

and trophic state. Our analysis does not capture cyanobacteria dynamics or those of cyanotoxins 390 

directly. Satellites with spectral resolution to capture cyanobacteria abundance, such as MERIS 391 

and Sentinel-3, have lacked the data availability for long-term, retrospective analyses (Coffer et 392 

al., 2020). However, future studies that are able to capture trends in cyanobacteria blooms 393 

specifically will help provide further context regarding the concerns of bloom intensification. 394 

4.2 Modeling Approach 395 

 396 

Our research focused on leveraging long-term remote sensing and environmental datasets 397 

that would supplement the ongoing debate regarding recent trends in phytoplankton blooms. 398 
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While the application of remote sensing for inland water quality monitoring has grown over the 399 

past decade (Topp et al., 2020), the retrieval of certain optical properties such as chlorophyll-a 400 

has remained a challenge (Matthews, 2011). However, by incorporating daily surface 401 

temperature and meridional wind speed from datasets leveraging modern deep learning 402 

techniques we were able to show substantial improvements in model accuracy. The incorporation 403 

of fine-scale lake climate data over the 35-year time span of this study was instrumental to our 404 

ability to document trophic state changes and add evidence to the ongoing debate regarding the 405 

recent trends in increasing eutrophication and HABs.  406 

Most notably, surface water temperature was the second most important predictor 407 

variable of our trophic state model and could be important for a wide range of remote sensing 408 

based water quality models. Water temperature has proven to be an important predictor of 409 

chlorophyll-a across inland lakes (Liu et al. 2019; Karcher et al. 2020) as well as oceans 410 

(Dunstan et al. 2018). However, applied remote sensing models that predict chlorophyll-a are 411 

often limited to strictly optical predictors such as band-ratio (blue-green) models. These models 412 

work well in waterbodies where other parameters such as colored dissolved organic matter co-413 

vary with chlorophyll-a (O’Reilly et al., 1998). However, in optically complex waterbodies with 414 

higher levels of turbidity and dissolved organic matter band-ratio models struggle to accurately 415 

retrieve chlorophyll-a concentrations (Tzortziou et al., 2007; Zheng and DiGiacomo, 2007; 416 

Witter et al., 2009). Thus, relying on surface reflectance for predictive models has resulted in a 417 

lack of generalizability across a wide range of waterbodies. However, the incorporation of 418 

surface water temperature seems to have supplemented existing band-ratio features to better 419 

predict across a wide range of lake types.  420 
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Wind speed was another climate predictor variable that was substantially important in 421 

predicting trophic state. Correlations between wind speed and chlorophyll have been shown 422 

using remote sensing at global scales (Kahru et al., 2010). In addition, wind speed has been 423 

documented as an important driver of cyanobacterial bloom development with blooms favoring 424 

warm, calm weather (Kanoshina et al. 2003). Overall, the integration of daily, fine-scale weather 425 

data greatly improved our ability to predict trophic state and is likely to have a positive impact 426 

on similar approaches that leverage remote sensing data.  427 

5 Conclusions 428 

 With increases in global lake temperatures (Maberly et al., 2020), lakes globally are 429 

expected to become more eutrophic as a response to climate change (Yang et al., 2020). Yet, 430 

there have been conflicting results thus far regarding intensifying eutrophication and algal 431 

blooms in U.S. and global lakes (Ho et al., 2019, Wilkinson et al., 2022, Topp et al., 2021). 432 

While increasing eutrophication is a major threat to freshwaters, our analysis found that lakes in 433 

the Intermountain West region have not undergone widespread change. Rather, we found that 434 

most lakes were not changing, and a substantial number of lakes were becoming less eutrophic 435 

and more oligotrophic over this time period. In addition, the number of eutrophic lakes that have 436 

not undergone substantial change over this time period suggests algal blooms have been present 437 

in the region since at least the early 1980s. These results highlight the complex nature of 438 

observing changes in freshwater lakes across large scales. However, our results suggest that 439 

despite the processes that drive eutrophication (warmer temperatures, nutrient accumulation, 440 

etc.) which have increased over the past several decades, we haven’t yet observed a concurrent 441 

increase in eutrophication from a large, unbiased sample of 1,169 lakes in the Intermountain 442 
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West. This suggested suggesting controls on eutrophication in this region are complex and need 443 

further additional study.  444 
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CHAPTER TWO 
 

Validation of the Cyanobacteria Assessment Network (CyAN) in Wyoming Lakes 
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Abstract 
 

Harmful cyanobacterial blooms (HCBs) pose a major threat to both ecosystem and 

human health and have led to a need for frequent water quality monitoring. However, traditional 

in-situ monitoring programs are limited in their capacity to address the spatial and temporal 

coverage of HCBs. Remote sensing tools, such as the Cyanobacteria Assessment Network 

(CyAN), can provide daily estimates of cyanobacteria abundance in large lakes, yet the accuracy 

of these tools is still not fully understood. In particular, the relatively few existing validation 

studies have utilized existing datasets which have varying degrees of consistency and lack 

information on taxonomy. Our study aimed to address some of the limitations in the initial 

validation of CyAN and provide useful information that supports the most effective use of this 

tool for lake water quality monitoring in Wyoming. Using a targeted validation approach, we 

found that there was a positive relationship (R2 0.62) between remote sensing estimates and in-

situ cell counts. However, our analysis revealed the tendency for CyAN to overestimate cell 

counts (prediction bias of -11,070) and predict false positives. Given that this tool lacks the 

capability to provide information in near-shore environments or on toxicity, it is unlikely that 

CyAN will replace in-situ monitoring efforts. However, the spatial and temporal coverage of 

remote sensing tools such as CyAN can still provide useful information on the spatial and 

temporal patterns cyanobacteria blooms and help inform targeted monitoring approaches.  
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Introduction 
 

Algal blooms are expected to increase in frequency and intensity due to climate change, 

but detecting blooms poses challenges to the land and water management agencies that have a 

critical role in monitoring aquatic ecosystems. Accurate detection of Harmful Cyanobacterial 

Blooms (HCBs) is of particular importance due to the potentially toxic effects they can have on 

human health (Chorus and Welker, 2021; Duy et al., 2000; Buratti et al., 2017). Water quality 

impairment in lakes and reservoirs, including detecting HCBs, has historically been monitored 

and evaluated through in situ and laboratory sampling procedures (Averett and Schroder, 1994). 

Although in-situ methods are effective for the detection of HCBs, they struggle to account for the 

spatial and temporal distribution of cyanobacteria due to the complex biotic and abiotic 

interactions that drive their concentration (Graham et al. 2004).  

Cyanobacteria abundance can be highly variable and respond rapidly to short-term 

environmental fluctuations in nutrients, precipitation, and temperature (Heisler et al., 2008; 

Egerton et al., 2014; Reinl et al., 2021). As such, cyanobacterial blooms can develop and persist 

on a wide range of timescales (days, weeks, or months) (Heisler et al., 2008). This poses a 

challenge for in-situ monitoring programs that are often designed for broad-scale monitoring on 

a monthly or seasonal basis. In-situ monitoring programs are also limited by resources because 

identifying trends usually takes years of continued sampling across multiple sites. Hence, most 

studies focus on a small number of lakes, and are typically biased toward larger lakes in 

populated areas, as large-scale and prolonged sampling can be difficult and expensive (Stanley et 

al. 2019).  
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In recent years, the application of remote sensing and satellite imagery to water quality 

monitoring has overcome these limitations of in situ sampling programs and helped address 

cyanobacterial dynamics over larger spatial and temporal scales (Shi et al., 2019; Coffer et al. 

2021; Ignatius et al. 2022; Schaeffer et al. 2022). The application of remote sensing methods for 

water quality studies began in the 1980s (Gordon and Morel 1983). Spectrometers onboard 

satellites measure the radiance (surface reflectance) of visible light observed over the Earth’s 

surface. However, when measuring reflectance over a water body there are several constituents 

within the water column that affect reflectance values. The relationship regarding how different 

water column constituents reflect or absorb light, known as the spectral response curves of 

different spectra (constituents), can be used to obtain information regarding the concentrations of 

certain water quality parameters. 

The unique absorption and fluorescence characteristics of chlorophyll-a has been the 

focus of numerous algorithms that retrieve chlorophyll-a concentrations from satellite imagery. 

For example, waterbodies with high phytoplankton biomass have a spectral response that results 

in peaks in reflectance spectra at 709 nm (Gower et al. 1999). The height of this peak, termed the 

fluorescence line height, has been used to define the Maximum Chlorophyll Index (MCL) to 

characterize harmful algal blooms (Gower et al. 1999). The MCI was designed for the detection 

of algal blooms with a minimum chlorophyll-a concentration of 30 ug / L and has been used to 

monitor phytoplankton blooms across the globe (Gower et al. 2008; Schaeffer et al. 2022). 

However, chlorophyll-based algorithms such as the MCI flag high chlorophyll pixels regardless 

of what functional group is present (e.g., diatoms as opposed to cyanobacteria).   

The continued development of these retrieval algorithms has resulted in the 

Cyanobacteria Index (CI) and CIcyano algorithms that focus on cyanobacterial presence. The CI 
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was developed by Wynne et al. (2008) and utilizes the peaks in reflectance spectra at 681 nm, as 

opposed to 709 nm included in the MCI. This approach covers peaks in chlorophyll absorption 

and fluorescence. Importantly, reflectance signatures or spectra in remote sensing and in-situ 

data have been shown to differ among various phytoplankton species. Specifically, cyanobacteria 

have been shown to display significantly lower fluorescence values than other phytoplankton 

genera (Seppala et al., 2007, Wynne et al., 2008). Therefore, where chlorophyll absorption peaks 

and fluorescence drops the CI algorithm is able to provide estimates of cyanobacterial presence. 

This method has proven to be effective where blooms are primarily dominated by Microcystis sp. 

(Wynne et al., 2008). However, this method was also shown to overpredict concentrations of 

cyanobacteria abundance due to the instances where green algae (not cyanobacteria) do not 

fluoresce (Wynne et al. 2013). To address this, the CIcyano algorithm was developed by Lunetta 

et al. (2015) which includes the 620 nm band that is sensitive to phycocyanin, a pigment unique 

to cyanobacteria.  

The development of such algorithms has resulted in a capacity to specifically estimate 

cyanobacterial density and provide helpful information regarding the presence of potentially 

toxic species. This has simultaneously resulted in the development of numerous programs by 

NASA, the National Oceanic and Atmospheric Administration (NOAA), and the Environmental 

Protection Agency (EPA) to deliver useful products to resource managers. The Cyanobacteria 

Assessment Network (CyAN), uses images from the Sentinel-3 satellite and the CIcyano 

algorithm to provide estimations of cyanobacteria abundance (Wynne et al., 2018). The spatial 

resolution of Sentinel 3 pixels is relatively large (300 meters x 300 meters), compared to the 

spatial resolution of Landsat imagery (30 meters by 30 meters). Thus, CyAN estimates are 

limited to relatively large waterbodies to avoid adjacency effects and pixel mixing (Clark et al., 
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2017). This remote sensing product provides daily and 7-day maximum composite observations 

of cyanobacteria estimates, and currently serves as a major synoptic tool for resource managers. 

However, matchups of in situ data and remote sensing estimations are still needed to determine 

the accuracy of these methods.  

Previous validation efforts of CyAN have been limited to one species, Microcystis sp., or 

provide no information on taxonomic differences (Mishra et al., 2021; Lunetta et al., 2015). 

Furthermore, published validation locations for CyAN studies have been restricted to 14 US 

states (Mishra et al., 2021). In the western US, only California, Oregon, Utah, and Idaho are 

represented. In this study, our goal was to validate the effectiveness of the CyAN product and 

CIcyano algorithm (used interchangeably here) for estimating cyanobacteria abundance in 

Wyoming lakes and reservoirs. Specifically, we address gaps in understanding regarding the 

model performance across different cyanobacteria species and across a wide range of lakes with 

different trophic status. Overall, we aim to provide information that supports the most strategic 

use of this product as a tool to monitor cyanobacterial blooms in Wyoming waterbodies.  

 

Materials and Methods 

Study Design and Data Collection 

We conducted a remote sensing verification study during the summer of 2021 across 12 

lakes and reservoirs in Wyoming. We selected 12 out of 40 resolvable waterbodies to capture a 

wide range of lake and landscape features (Table 1, Figure 1). For each waterbody, three 

sampling locations were identified that reduced the potential for adjacency effects and pixel 

mixing from shoreline pixels. A one pixel buffer (300 m x 300 m) was used to select open water 
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sites across pelagic, riverine, and transitional environments (Figure 2). We collected water 

quality samples monthly, when feasible, at each waterbody from June 2021 to September 2021.  

We collected phytoplankton, chlorophyll-a, nutrients, zooplankton, and physicochemical 

parameters (such as pH and dissolved oxygen) across all sites. Phytoplankton samples were 

collected for remote sensing verification at each sampling location at depths just below the 

surface using 250 milliliter (mL) polypropylene bottles. Phytoplankton samples were preserved 

using a Lugol’s iodine solution and stored in a dark container until processing. In addition, we 

collected chlorophyll-a samples by immediately filtering 500 mLs of lake water taken at 0.5 

meters depth using a van Dorn sampler. Filters were placed inside sterile film canisters to 

prevent light penetration. We also collected water samples for total nitrogen (TN) and total 

phosphorus (TP) analysis and preserved them using sulfuric acid (H2SO4). Chlorophyll-a, TN, 

and TP samples were all kept on ice (~4° C) while in the field and frozen upon return to the 

laboratory. Zooplankton samples were collected using a zooplankton net with vertical tows were 

taken within the water column at each site. We preserved zooplankton samples with a 90 % 

ethanol solution and stored samples in a dark container until processing. Lastly, we recorded 

vertical profiles of various water quality parameters such as temperature, dissolved oxygen, 

conductivity, and pH at 0.5 - 1.0 meter intervals using a Yellow Springs Instrument (YSI) 

ProDSS handheld multimeter. The was calibrated at each sampling location prior to each 

sampling event.  

 
Laboratory Methods 

We enumerated cyanobacteria in phytoplankton samples using a Sedgewick-Rafter 

counting chamber. Counting chambers are the most common method for phytoplankton 
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enumeration and are well adapted for samples of high population density, such as algal blooms. 

We examined the presence of cyanobacterial species in each sample and recorded filaments or 

colonies of these species as objects or units. The average number of cells per filament or colony 

was estimated by counting the number of cells in the first 10 filaments or colonies. If this was 

not feasible, we used average cell number / unit from literature (Olenina et al., 2016). A 

minimum of four rows containing 50 squares was counted per sample. Then, Equation 1 was 

used to calculate the number of cells per unit of volume, where N represents the total number of 

cells counted, V is the volume of the chamber in mm3, A is area of a field in mm2, Nf is number 

of fields counted, d is depth of chamber in mm, and C is the concentration factor (if used).  

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1                  𝐶𝑒𝑙𝑙𝑠/𝑚𝐿 =
𝑁 ∗ 𝑉

𝐴𝑓 ∗ 𝑁𝑓 ∗ 𝐶
 

 

We processed chlorophyll-a samples using a Turner Designs AquaFluor Handheld 

Fluorometer/Turbidimeter. We extracted samples in 10 milliliters of 90 % buffered ethanol 

(EtOH) for 12-24 hours. 2.7 mL of sample was added to a glass cuvette and fluorescence units 

were recorded. Then, we added 90 microliters (uL) of 0.1 N hydrochloric acid and recorded the 

fluorescence units 90 seconds later. We determined the concentration of chlorophyll-a in the 

sample by 1) determining the amount of chlorophyll-a in the extraction using an instrument-

specific standard curve that relates chlorophyll-a concentration to the difference between initial 

fluorescence and fluorescence after acidification and 2) correcting for the volume of lake water 

filtered for the extraction (usually 500 mL). All chlorophyll-a samples were processed within a 

month of sample collection.  
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Data Processing and Analysis 

Estimates of cyanobacteria abundance derived from CyAN were obtained from the 

National Aeronautics and Space Administration (NASA) Earth Science Data Systems (ESDS) 

web portal. The CyAN product represents a level 3 product, defined as any geophysical 

parameter (such as chlorophyll-a, or cyanobacteria abundance) mapped in uniform geo-spatial 

scales with completeness and consistency. CyAN data is made available through GeoTiff files of 

tiles that cover large areas of the continental US. For this study, we downloaded tiles covering 

the spatial extent of Wyoming (3_2, 3_3, 4_2, and 4_3) for dates that coincided with sampling 

events.  

We extracted digital number (DN) values provided by CyAN over pixels that matched 

sampling locations and dates. We also extracted DN data from existing cell count data provided 

by the Wyoming Department on Environmental Quality (DEQ), although these represented few 

(5%) of all observations. These DN values were converted into CIcyano and then cyanobacteria 

cells / mL with the following equations (Equation 2; Equation 3). 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2                 𝐶𝐼𝑐𝑦𝑎𝑛𝑜 = 10( 3.0
250)∗𝐷𝑁−4.2 

      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3                𝐶𝑒𝑙𝑙𝑠/𝑚𝐿 = 𝐶𝐼𝑐𝑦𝑎𝑛𝑜 ∗ 1000000 

 

To test the accuracy of the CyAN product at different spatial resolutions, we not only 

extracted 1 x 1 pixel windows that corresponded to sampling locations but also 3 x 3 and 5 x 5 

pixel means surrounding sampling locations. All processing of remote sensing data and spatial 

analysis was done in ArcMap Version 10.7.1 and converted to text files for use in Program R. 

We visualized the relationship of in-situ cyanobacteria cells / mL and remote sensing cells / mL 
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in Program R (R Core Team, 2022). We calculated the mean absolute error (MAE) and root 

mean squared error (RMSE) as a measure of error between these two different methods. 

Additionally, we categorized both sets of data into two categories: 1) below bloom threshold ( < 

20,000 cells / mL) and 2) above bloom threshold (> 20,000 cells / mL) based on existing criteria 

(Chorus and Welker, 2021). We then examined the effectiveness of CyAN to correctly 

categorize bloom based on these thresholds through a confusion matrix using the caret package.  

Results  

In-situ Data 

The sites included in our study covered a wide range of trophic status and productivity 

throughout the summer. Half (6 out of 12) of sites had chlorophyll-a values that reflected 

eutrophic conditions at some point during the summer (Figure 3). Whereas, four sites had 

chlorophyll-a reflected a more mesotrophic lake status during the summer (Figure 3). 

Chlorophyll-a was not collected at New Fork Lakes or Yellowstone Lake, however these lakes 

are assumed to be mostly oligotrophic. Phytoplankton samples exhibited a wide range of 

taxonomic diversity among both green algae and cyanobacterial species. The most common 

algae species observed were Asterionella formosa and Fragilaria sp., both belonging to the class 

Bacillariophyceae (diatoms). Aphanizomenon flos-aquae and Anabeana sp. were the most 

common cyanobacterial species present and reflected the greatest proportion of cell counts. 

While the presence of non-cyanobacterial species were recorded (i.e. Fragilaria sp.), only units 

of cyanobacteria species were counted. Other cyanobacteria species observed included 

Microcystis aeruginosa, Woronichinia, and Gleotrichia echinulata (Figure S1).  

In-situ cell counts of cyanobacteria cell counts ranged from 0 cells / mL to 94,124 cells / 

mL. Cyanobacteria are naturally found in low densities across almost all lakes and reservoirs, 
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and cyanobacteria species were identified in 8 out of 12 sites. We found the presence of 

cyanobacteria to be rare in June and July months and peaked later in the summer during August 

and September. CIcyano values were highest among sites in transitional environments, followed 

by riverine and lacustrine sites, respectively.  

Lastly, to determine the error associated with our counting methods we collected 

duplicate samples to enumerate and compare with original samples. We observed a significant 

positive correlation (R2 of 0.9) between cyanobacteria cell counts and duplicate samples taken at 

sites (Figure S2). Sample duplicates covered the observed range of cell abundance across all 

samples and included multiple cyanobacteria species.  

Remote sensing verification 

CIcyano values derived from CyAN ranged from 0 - 120 covering cell counts from ~ 

6,500 cells / mL - 173,780 cells / mL. However, cell counts corresponded primarily to relatively 

low ranges (10,000 - 109,999).  The highest cell counts derived from CyAN were observed in 

August months across the majority of sites. The majority of CIcyano values were extracted from 

the corresponding sampling date of in-situ data. In instances where cloud cover resulted in 

invalid pixels, the CIcyano value from the previous or following day was extracted. There was a 

positive correlation between the cell counts derived from CIcyano and from in-situ data (R2 of 

0.62). Mean absolute error (MAE), the difference between observed and predicted values, was 

12,434 (Table 2). Whereas, root mean squared error (RMSE) was 24,833 cells / mL (Table 2). 

However, prediction bias, the amount by which in-situ observations were greater than CIcyano 

was -11,070, indicating the over estimation of cell densities by CIcyano (Figure 4). In addition, 

we observed that prediction error tended to be higher when samples displayed mixed 

cyanobacteria assemblages (Figure 5). Lastly, we found that CIcyano values extracted across 
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pixel means (3 x 3 and 5 x 5) had substantially higher prediction errors. For example, matchups 

that included 3 x 3 pixel means had an RMSE of 109,753 cells / mL, compared to that of 1 x 1 

pixels (24,833 cells / mL) (Table 2).  

Regardless of the accuracy of CIcyano cell counts compared to in-situ cell counts, we 

found that CIcyano effectively classified algal bloom thresholds. Bloom classification was 

evaluated through a confusion matrix as well as various accuracy and error metrics (Table 3; 

Figure 6). For observations below the threshold for bloom presence (<20,000 cells / mL), 

CIcyano had an overall accuracy of 88 %. For observations above the threshold for bloom 

presence (>20,000 cells / mL), CIcyano had a balanced accuracy of 71 %. Overall, CIcyano had 

a global accuracy of 86 % with a 95% confidence interval between 79 % and 94 % in its ability 

to classify cyanobacterial bloom thresholds. 

 Lastly, we also evaluated the relationship between cyanobacteria density and chlorophyll-

a concentrations. Cyanobacteria density varied across a wide range of chlorophyll-a 

concentrations and reflected a poor relationship between the two metrics. We observed that high 

cyanobacteria cell densities (> 20,000 cells / mL) tended to have chlorophyll-a concentrations in 

the range of 0 – 20 ug/L (Figure 7). However, these high cyanobacteria densities could be 

observed with chlorophyll-a values as low as 5 ug / L. Overall, high chlorophyll-a concentrations 

(> 30 ug/L) did not necessarily indicate the presence of cyanobacteria (Figure 7). 

Discussion  

Algorithm Validation 

Our primary motivation for this study was to supplement the initial validation of the 

CIcyano algorithm by addressing its effectiveness at capturing HCB dynamics in Wyoming lakes 
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and reservoirs. Given the interest in remote sensing for water quality monitoring, a thorough 

understanding of the uncertainty of these methods at regional scales is critical to guide the 

appropriate use of these tools for state management agencies. Our study was designed to fill in 

the gaps from the few existing validation studies by using a targeted approach. Our analysis 

revealed that CIcyano tended to overestimate cell counts when compared to in-situ data, yet still 

was robust enough to provide accurate estimates of bloom status when compared to in-situ 

thresholds.  

The initial validation of CIcyano derived cell counts was conducted by Lunetta et al. 

(2015) and utilized the National Lakes Assessment Program (NLAP) inventory as well as 

various data sets from state agencies for remote sensing validation. Lunetta et al. (2015) reported 

a RMSE of 225,369 cells / mL and an R2 of 0.87 when comparing in-situ cell counts to CIcyano 

cell counts. However, our analysis showed an RMSE of 24,833 cells / mL with an R2 of 0.62. 

While considerably lower, the Lunetta et al. (2015) analysis used in-situ cell count data that 

covered much larger cell densities (300,000 - 1,000,000). They reported a more even distribution 

of prediction error (under prediction and over prediction). However, their study used temporal 

windows of up to 7 days. Given previous studies that have shown the potential for CIcyano to 

overestimate and report false-positives and the results of this study, it is possible that the greater 

time window used in Lunetta et al. (2015) resulted in a more random distribution of cell count 

estimates.  

The temporal stability of cyanobacteria abundance varies depending on factors that 

interact to drive bloom formation. In particular, wind speed has been shown to drive the spatial 

distribution of cyanobacteria blooms in the short-term (Bresciani et al., 2013; Xue et al., 2022). 

Given the sensitivity of cyanobacteria bloom dynamics to daily climate factors such as wind 
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speed and light availability, a 7-day temporal window for satellite matchups likely introduces 

substantial variation. The ability of wind speed to drive the spatial distribution of cyanobacteria 

densities within lakes could have also influenced the results presented in this study. 

Investigations into available wind energy have shown Wyoming to be one of the regions in the 

U.S. with the greatest wind speed (Martner and Marwitz, 1982). However, we attempted to 

minimize the effect of wind speed on our results by sampling during clear, calm conditions.  

The evaluation of CIcyano across different taxa provides new context regarding the 

uncertainty of this remote sensing method. The CI was originally developed for the use of 

detecting Microcystis sp. in the Great Lakes region (Wynne et al. 2008). CIcyano has been 

developed to apply to a wide range of cyanobacteria taxa, yet no study to our knowledge has 

reported differences in prediction accuracy across different cyanobacteria taxa. The majority of 

our samples present with cyanobacteria were dominated by Aphanizomenon flos-aquae. This 

species has fundamentally different morphological characteristics compared to Microcystis sp. 

and represents a filamentous type of cyanobacteria. Differences in taxonomic biovolumes and 

the effects on reflectance as determined by the quantity of pigment and scattering of individual 

species has been shown to be substantial (Wood et al., 2009). For example, the biovolume of 

Microcystis sp. can be 19 um3 and Anabaena circinalis can be 208 um3 (Wood et al. 2009). 

Furthermore, published bio volumes can differ based on the size class of specific cyanobacteria 

taxa (small Microcystis sp.  = 19 um3 vs. large Microcystis sp. = 93 um3). The dominant presence 

of Aphanizomenon flos-aquae in our samples, combined with our results that CIcyano tends to 

overpredict cell counts may shed light on potential differences in accuracy across different 

cyanobacteria assemblages. In other words, CIcyano may be more prone to overfitting when it 
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comes to cyanobacteria assemblages consisting of filamentous species (such as Aphanizomenon 

flos-aquae or Anabaena circinalis), as opposed to species with spherical morphologies.  

While cell counts are particularly useful in determining risk based on published 

thresholds, the evaluation of CIcyano across broad categories may be of particular use. For 

example, if in-situ cell counts were enumerated at 70,000 cells / mL but CIcyano reported a cell 

density of 200,000 cells/mL, there is limited utility in the large difference when both methods 

indicate a bloom is present (> 20,000 cells / mL). Therefore, we evaluated the ability of CIcyano 

to classify bloom presence based on the available bloom thresholds. CIcyano was capable of 

classifying bloom presence with a global accuracy of 88% and a kappa of 0.52. This is consistent 

with the only other known analysis where CIcyano has been validated across categories (bloom 

presence vs. bloom absence). Similarly, Mishra et al. (2021) found that CIcyano was capable of 

classifying bloom presence with a global accuracy of 84 %. Importantly, the most common 

misclassification (31%) was the tendency for CIcyano to predict bloom presence when in-situ 

data reflected absence (Mishra et al., 2021). Our study also indicated that the most common 

misclassification were instances of false positives, where CIcyano predicted bloom presence 

where in-situ data did not.  

Management Implications  

The deployment of in-situ water quality monitoring plans to monitor HCBs is limited by 

the available resources (time and funding) required to cover high spatial and temporal variation 

of HCBs, especially in a large, sparsely populated state such as Wyoming. Remote sensing 

products, such as CyAN, have been developed as an early warning tool for land and water 

management agencies to provide estimates of cyanobacteria densities. The data collected in this 
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study provides insight into the effectiveness of CyAN compared to in-situ cyanobacteria 

collection and processing.  

CyAN was found to be particularly effective in classifying the presence or absence of 

HCBs as defined by existing thresholds (20,000 cells / mL). There were few instances where in-

situ data indicated a bloom was present, but CyAN failed to flag pixels as such (false-negatives). 

However, when cyanobacteria are present above the bloom threshold of 20,000 cells / mL, our 

results indicated that CyAN often overpredicts the abundance of cyanobacteria compared to in-

situ data. Furthermore, we found that CyAN tends to overpredict when there is a high level of 

taxonomic diversity among phytoplankton species present with in-situ samples. These results are 

consistent with previous results of the Cyanobacteria Index and CIcyano which highlight 

overprediction in instances where green algae do not fluoresce (Wynne et al., 2013).  

These findings provide important context for resource managers to determine the best 

way to utilize this remote sensing tool. The major benefits of CyAN are the ability to explore 

cyanobacterial estimates across a large spatial area without having to spend time and funding on 

in-situ sample collection and enumeration. This is particularly useful for understanding 

cyanobacterial variation within lakes and across waterbodies in high elevation or remote 

environments that may require additional resources. However, CyAN provides no information 

regarding the toxicity of cyanobacteria and does not capture near-shore environments where 

recreational exposure is assumed to be highest. Therefore, CyAN will likely not replace in-situ 

sampling methods for cyanobacteria that are focused on addressing the harmful exposure to 

cyanotoxins.  

Given the inability for CyAN to capture near-shore pixels and toxicity, CyAN has the 

greatest potential to capture the broad lake-wide distribution of cyanobacteria and long-term 
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trends in bloom occurrence. Current cyanobacteria in-situ monitoring is often constrained to 

shorelines due to the ease of sampling and available resources, yet CyAN can provide important 

context regarding the size of blooms. Furthermore, the existing and continued record of daily 

CyAN observations will allow for trend analyses that shine light on the spatial and temporal 

trends of HCBs. Overall, CyAN has the greatest potential to classify blooms and understand 

elusive spatial and temporal trends of HCBs, yet in-situ sampling methods will likely remain the 

most effective way to monitor and evaluate HCB exposure.  

Conclusion  

This study provides data designed to evaluate the effectiveness of the CyAN program and 

CIcyano algorithms in Wyoming lakes and reservoirs. We found that cell counts derived from 

the CIcyano algorithm were positively correlated with in-situ cell counts, however CIcyano 

tended to overestimate at higher cell concentrations. The inclusion of mixed phytoplankton 

assemblages and different taxa of cyanobacteria supplement previous studies that show in 

instances where multiple species are present, CIcyano can overestimate cell counts. Regardless, 

we found CIcyano to be effective in classifying bloom presence as defined by existing bloom 

thresholds. While in-situ sampling monitoring is still needed to address toxicity and presence of 

cyanobacteria in high-use shoreline areas, CyAN provides the opportunity to classify blooms in 

open-water areas and understand elusive spatial and temporal trends of HCBs.  
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Table 1. Lake characteristics of the sites sampled during summer 2021.  

Lake name Elevation (m) Lake Area (ha) Watershed Area (ha)  

Alcova Reservoir 1677 926 15824  

Boysen Reservoir 1441 4794 952763  

Fontenelle Reservoir 2028 3169 833301  

Glendo Reservoir 1414 4880 845959  

Grayrocks Reservoir 1343 1457 327284  

Guernsey Reservoir 1351 784 173361  

Lake Viva Naughton 2208 562 61533  

New Fork Lakes 2385 511 4599  

Ocean Lake 1596 2469 26226  

Pilot Butte Reservoir 1667 338 440914  

Wheatland Reservoir no. 3 
/ Post Lake 

2117 1545 4573  

Yellowstone Lake 2360 34172 20774  
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Table 2. Error metrics across the various pixel windows used for extraction 

Pixel window MAE RMSE 

1 x 1 12,434 24,833 

3 x 3 mean 

5 x 5 mean 

31,827 

33,220 

109,753 

119,475 
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Table 3. Confusion matrix statistics extracted from comparison of predictions across bloom 
thresholds (Figure 6). 

Overall Accuracy 95 % CI Kappa 

 

88.37 % 

 

(79.65 %, 94.28 %) 

 

0.5243 
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Figure 1. Map of lakes and reservoirs sampled during the summer of 2021. 
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Figure 2. Example of CIcyano values extracted at Fontenelle Reservoir. P1, P2, and P3 

represent the three sampling locations at Fontenelle Reservoir, with P3 representing a 

more riverine environment and P1 representing a more lacustrine environment.  



 

70 
 

 

 

Figure 3. Boxplots of chlorophyll-a samples across sites. Chlorophyll-a was found to vary 

across sites with Boysen Reservoir, Fontenelle Reservoir, Grayrocks Reservoir, Lake 

Viva Naughton, and Wheatland Reservoir no. 3 being the most eutrophic of the study 

sites. Two sites, New Fork Lakes and Yellowstone Lake did not have chlorophyll-a data 

available.  
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Figure 4. Regression of CIcyano predicted cells / mL vs in-situ cells / mL. The solid line 

represents a 1:1 line and shows a strong positive relationship between remote sensing 

estimates and in-situ cell counts. 
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Figure 5. CyAN accuracy across samples with varying amounts of cyanobacteria taxa 

 present.  
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Figure 6. Confusion matrix illustrating the prediction accuracy of CIcyano to distinguish 

bloom presence based on the threshold of 20,000 cells / mL.  
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Figure 7. Relationship of chlorophyll-a and in-situ cyanobacteria density. The top panel 

(A) represents the data collected within this study. The bottom panel (B) represents data 

collected by the Department of Environmental Quality (DEQ).  
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Supplementary figures: 

 

Figure S1. Common cyanobacteria taxa observed across in-situ samples.  
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Figure S2. Regression of in situ cyanobacteria duplicate samples indicated a strong 

positive relationship and reflect consistency in the laboratory and enumeration methods 

used for analysis.  
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 Figure S3. Regression of Chlorophyll-a duplicate samples indicated a strong positive  

 relationship and reflect consistency in the field and laboratory methods used for analysis.  
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Introduction 

 
Ecosystems have regularly faced periodic and persistent changes (Steffen et al. 2015) with disturbance serving an 
important role in structuring communities and natural systems (Hobbs and Huenneke 1992). Disturbance, here 
defined as an event that disrupts ecosystem, community, or population structure and changes resources, 
substrate availability, or the physical environment (White and Pickett 1985), is essential for many organismal life 
histories and can contribute to increased species richness (Hobbs and Huenneke 1992; Reuling et al. 2019). 
However, the frequency, intensity, and size of a disturbance can have important implications for community 
response (Noble and Slayter 1976; Peereman et al. 2022). Understanding the mechanisms of disturbance on 
ecological patterns is often complicated due to the direct and indirect pathways in which alterations may be 
mediated. For example, a perturbation may be reflected immediately by direct mortality of organisms. However, 
a perturbation may also cause a cascade of biological or chemical changes and result in indirect implications, such 
as changes in resource availability. Increasingly, ecologists are faced with the challenge of predicting how novel 
and complex human perturbations will impact community structure and function (Bae and Park 2014). A better 
understanding of trophic interactions and biogeochemical impacts can aid in the prediction of perturbation effects 
on ecosystems, especially in circumstances when systems receive multiple disturbances simultaneously (Hobbs 
and Huenneke 1992; Caraco 1993). Through these more mechanistic approaches, ecologists can help identify 
systems and organisms that may be most sensitive to changes in the environment.  
 
Human induced environmental perturbations constitute a novel disturbance to which species and ecosystems 
have not previously encountered or adapted. Anthropogenic activity (i.e. land use changes, biogeochemical cycle 
disruptions, nonnative species introductions, carbon emissions) is increasing both the rate and the intensity of 
environmental change (Dudgeon et al. 2006; Oliver et al. 2015; Steffen et al. 2015; Reid et al. 2019). Widespread 
changes to abiotic and biotic variables such as landscape cover and niche-based processes (i.e. environmental 
filtering and biotic interactions), have caused shifts in the global distribution of organisms and fluctuations in levels 
of biodiversity (Chapin III et al. 2000). The direct effects of anthropogenic disturbances are most pronounced in 
trophic groups highly sensitive to change, which varies considerably across taxa and ecosystem type (Voigt et al. 
2003; Thackeray et al. 2016; Hu et al. 2022). However, the indirect effects on other species and trophic levels 
conferred through linkages within food webs has important implications for ecosystem functioning (Seibold et al. 
2018). While previous work has demonstrated direct effects on sensitive species, there is a critical gap in our 
understanding of how indirect effects on more resilient species will restructure ecosystems, inhibiting our ability 
to fully predict the consequences of anthropogenic activities.  
 
There has been increasing recognition of the importance of disturbance, both natural and anthropogenic, in the 
function of aquatic ecosystems (Paerl and Paul 2012; Hosen et al. 2019; Lehman et al. 2022; Williams et al. 2022). 
Aquatic ecosystems are well known for their role in buffering the effects of anthropogenic disturbance, such as 
the role of oceans in cycling atmospheric carbon dioxide and wetlands and riverine floodplains in mitigating flood 
risk (Hasse 2017; Jiang et al. 2019; Randall et al. 2020). However, the buffering capacity of aquatic ecosystems to 
environmental perturbations is increasingly limited, and in some cases, already declining (Palmer et al. 2008; Jiang 
et al. 2019; Hessen and Vandvik 2022) as a result of increasingly pervasive disturbances (Hasse 2017; Walters et 
al. 2018; Hessen and Vandvik 2022; Lehman et al. 2022). Environmental perturbations are often manifested as 
changes to water quality (Zampella 1994), which is an important driver of regional species distributions and 
diversity (Flynn et al. 2009; Kim et al. 2021; Dong et al. 2022). Emerging stressors to water quality include climate 
change, eutrophication and sedimentation (Hooper et al. 2005, 2012; Carpenter et al. 2011; Reid et al. 2019). The 
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ramifications of these interacting environmental perturbations can lead to changes in aquatic ecosystems, such 
as favoring the proliferation of harmful cyanobacterial bloom (HCB) species, and causing habitat degradation, 
which is a leading and persistent cause of population loss in freshwaters (Dudgeon et al. 2006).  
 
Through my PhD dissertation research, I seek to quantify the indirect impacts of disturbances influencing species 
presence and distribution in aquatic ecosystems, understand mechanistic links between water quality 
impairments and community response, and evaluate the role of disturbance on ecological patterns. Abiotic 
freshwater ecosystem conditions such as physical habitat, sedimentation rates, hydrological patterns and water 
temperature are modified by human actions through their direct linkages to terrestrial environments, particularly 
the local and regional catchment scale (Vörösmarty et al. 2010). Similarly, aquatic ecosystem drivers, such as the 
input of nutrients, autochthonous production, food availability and quality, and species diversity, are also 
influenced by catchment scale anthropogenic disturbances (Parreira De Castro et al. 2016). In the four chapters 
of my PhD, I will investigate the ecological impacts associated with two types of aquatic disturbances: sediment, 
including habitat response to sediment flushing events and fishes variable sensitivity to suspended sediment, and 
harmful cyanobacterial blooms and the resulting food web response.  
 
In my first two chapters, I will investigate both direct and indirect effects of sediment on habitat and fishes. 
Infrastructure such as dams and diversions, has altered natural flow regimes in rivers, changing water temperature 
(Clarkson and Childs 2000), discharge, and sediment-transport patterns (Holden 1979). Changes in sediment-
transport patterns have important implications for aquatic ecosystems. For example, sedimentation on, or within, 
the riverbed can alter the substrate characteristics including the surface conditions and the hyporheic zone (Wood 
and Armitage 1997). At high concentrations, sedimentation can indirectly have deleterious effects on macrophyte 
communities (Clarke and Wharton 2000) and macroinvertebrate populations by disrupting filter feeding, impeding 
foraging and mobility, and increasing macroinvertebrate drift (Ward et al. 1998; Collins et al. 2011). Fishes are 
also affected by suspended sediment and aggradation including reduced fitness of free-swimming fish and 
decreased success of egg/larval survival (Jensen et al. 2009) with indirect effects prevalent at the habitat level 
(Greig et al. 2005). Understanding how dam management alters sediment transport and abiotic riverine conditions 
has important implications for predicting the effects of novel anthropogenic disturbance on biological processes. 
 
In Chapter 1, “Understanding the Effects of Dam Sediment Management on Salmonid Spawning Habitat”, I will 
explore the relationship between dam operations and downstream sediment dynamics in the context of riverine 
fisheries management. My goal is to provide managers with the tools and information to address these challenges. 
I will assess how experimental releases of sediment contrast with normal drawdown operations and quantify the 
seasonal impact of dam operations on downstream spawning habitat. I will evaluate the capacity of real-time, 
near real-time, and laboratory water column sediment metrics to predict the effects of sediment releases from 
dams and other seasonal dam operations on spawning habitat with implications for the youngest life stages of 
fish, including eggs and embryos. This chapter will present the results of three years of spatiotemporal monitoring 
and provides more precise quantitative clarification of the impact of sediment releases from dams on spawning 
habitat and downstream fisheries. 
 
In Chapter 2, “An Updated Quantitative Assessment of Risk and Impact between Suspended Sediment and Fish“, 
I will expand upon Newcombe and Jensen’s (1996) seminal work exploring the severity of ill effects of suspended 
sediment exposure to various life stages and taxonomic groups of fishes. I will synthesize existing literature, 
including studies in Newcombe and Jensen (1996), and new studies to the present to update the severity index. I 
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will provide updated information on which fish species, life history stages, and time periods are most sensitive to 
sediment releases, and track fish species and life history stage. This work will allow us to assess the sensitivity of 
Wyoming fishes to suspended sediment and develop an understanding of key temporal windows with respect to 
fish life histories. The updated severity of ill effects models documented here will allow managers to make 
informed decisions and set regulatory thresholds to help ensure the amount and timing of sediment releases are 
reflective of ecological requirements. 
 
In my last two chapters, I will explore how harmful cyanobacterial blooms affect ecosystem functioning by 
investigating changes in community composition and food web response. Anthropogenic induced changes in the 
hydrological cycle, and increases in nutrient input and water temperatures have led to a significant increase in the 
frequency, intensity, duration, and geographic range of HCBs (Robarts and Zohary 1987; O’Neil et al. 2012; Paerl 
and Paul 2012; Jia et al. 2017; Wells et al. 2020). Many bloom-forming cyanobacterial species produce toxins that 
can result in widespread socioeconomic implications such as contaminating drinking water supplies and reducing 
recreational opportunities (O’Neil et al. 2012; Glibert 2017; Angradi et al. 2018; Kouakou and Poder 2019). Further, 
HCBs compromise the integrity of aquatic ecosystems by dominating the phytoplankton community, disrupting 
food-web processes and inhibiting the transfer of primary production to primary consumers (Muller-Navarra et 
al. 2000; Zheng et al. 2013). Consequently, HCBs are known drivers of changes in diet selectivity with potential 
consequences for food web-scale interactions (Creed et al. 2018) and understanding the indirect impacts of HCBs 
is pressing.  
 
In Chapter 3, “Effects of Harmful Cyanobacterial Blooms on Zooplankton Communities in Wyoming Reservoirs”, I 
seek to evaluate the response of zooplankton communities to harmful algal blooms across 17 reservoirs spanning 
a gradient of oligotrophic to eutrophic lakes in Wyoming. I first set out to understand the spatial distribution of 
zooplankton species in large reservoirs in Wyoming, and evaluate temporal variation in zooplankton species 
dynamics across these systems to address a regional knowledge gap in zooplankton community composition. 
Second, I will evaluate how zooplankton species dynamics change in the presence of HCBs and third, quantify the 
underlying physiochemical factors related to HCBs that lead to changes in zooplankton communities and species 
abundance. Understanding the implications of blooms on zooplankton communities that play a critical role in the 
transfer of energy from primary producers to primary consumers will help mitigate the impacts of climate change 
on aquatic ecosystems. 
 
In Chapter 4, “Isotopic Niche Space: Are Harmful Cyanobacterial Blooms Driving Resource Use Shifts in Small-
Bodied Fishes?”, I will evaluate the effects of HCBs on small-bodied fish trophic niche dimensions using stable 
isotopes to elucidate patterns of resource use. Understanding the complexities of biotic interactions, biodiversity, 
and the role of abiotic factors that shape species distribution across a landscape is pertinent for conservation of 
aquatic systems. I will use carbon and nitrogen stable isotope analyses to examine trophic niche width of three 
sympatric small-bodied fish, Brook Stickleback Culaea inconstans (an invasive species), Iowa Darter Etheostoma 
exile (a species of greatest conservation need), and Fathead Minnow Pimephales promelas, in two lakes in SE 
Wyoming where HCBs occur and do not currently occur. I will characterize fish and prey isotope compositions 
through time, space, and ontogeny. Then, I will examine isotope values in relation to prey availability and harmful 
cyanobacterial bloom occurrence. Quantifying trophic niche width and patterns of niche overlap will help us better 
understand how HCBs affect species interactions, trophic and food web dynamics, and overall impacts of HCBs on 
ecosystems. 
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Across all chapters of my PhD, I will investigate the effects of water quality disturbances on ecological patterns 
and evaluate variable sensitivity among taxa groups by quantifying abiotic and biotic drivers. Combined, these 
results will build on existing knowledge of how environmental perturbations influence biotic communities. Direct 
effects of anthropogenic impacts are poorly understood in Wyoming aquatic systems, and indirect effects have 
been understudied in the broader scientific community. It is important to quantify the multitrophic level effects 
to help identify what indirect effects anthropogenic stressors have on aquatic ecosystems. Knowing the effects of 
perturbations on ecosystems allows ecologists to better assess the most effective way to facilitate management 
and conservation and thus develop guidance for managing and mitigating the effects of environmental change 
(Oliver et al. 2015).  
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Chapter 3 

The Effects of Harmful Cyanobacterial Blooms on Zooplankton Communities in Wyoming Reservoirs 

 
1. Introduction 
Harmful cyanobacterial blooms (HCBs) are intensifying globally and there is growing interest in their ecological 
effects (Ortiz et al. 2020). Aquatic ecosystems can be negatively impacted by HCBs through a suite of direct and 
indirect pathways and the associated water quality impairments can have wide ranging impacts (Paerl and Otten 
2016; Reid et al. 2019). For example, HCB cyanotoxin production can and competitively exclude other species 
and diminish water quality (Jewel et al. 2003; Glibert 2017). Similarly, HCB species constitute a poor food 
resource for primary consumers, which can negatively impact higher trophic levels and lead to declines to 
biodiversity (Sukenik et al. 2015; Glibert 2017; Wells et al. 2020). However, our understanding of how HCBs 
affect the structure, function, and dynamics of aquatic food webs is incomplete, and the implications for primary 
and secondary consumers, notably zooplankton, and higher trophic levels are unclear (Ger et al. 2014; Briland et 
al. 2020). 
 
Zooplankton play a crucial role in the redistribution of nutrients and regulation of energy flow through aquatic 
food webs and therefore can directly influence community structure (Zhang et al. 2022). The composition of 
zooplankton species is highly sensitive to environmental change (McNaught 1975) with disturbances causing 
detectable shifts in relative species abundance and body size distribution (US EPA 2021). Many zooplankton 
species are unable to consume cyanobacteria species due to their colonial or filamentous nature during blooms 
(Ger et al. 2014). In turn, shifts in the composition of primary producers towards the dominance of HCBs can 
result in changes in zooplankton community dynamics and declines in zooplankton biomass, though the patterns 
of zooplankton community composition are not consistent (Fulton and Paerl 1987).  
 
In some systems, HCBs have been shown to cause a shift in zooplankton communities towards copepods, 
rotifers, and sometimes smaller cladocerans (Richman and Dodson 1983; Orcutt and Pace 1984; Fulton and Paerl 
1987). One study found calanoid copepods dominated eutrophic lakes and it was hypothesized they were better 
adapted to utilize large cyanobacteria prey. The author notes the filamentous nature of some HCB species was 
found to inhibit foraging of cladocera, thereby reducing growth and production (Haney 1987). This work 
supports the hypothesis that shifts in zooplankton community could be attributed to zooplankton morphology 
and resource availability, or lack thereof due to the inedible nature of HCBs to some zooplankton. However, 
zooplankton community shifts were equivocal across systems. For example, another study found zooplankton 
community and size structure across lake trophic gradients indicated calanoid copepods declined and cyclopoid 
copepods increased in relative abundance, unrelated to size structure. The author suggests these results refute 
the notion that changes in resources during eutrophication favors smaller zooplankton (Pace 1986). Further 
complicating our understanding of the role of HCBs on zooplankton, strong positive relationships were found 
between cyanobacteria concentration and the biomass of several herbivorous zooplankton taxa (Briland et al. 
2020). This suggests that herbivorous zooplankton may benefit from HCBs more than they are hampered by 
them (Briland et al. 2020) and supports the hypothesis that overall high food abundance during blooms may be 
beneficial to some zooplankton abundances. Other work found zooplankton grazers such as daphnia species 
may promote cyanobacterial bloom growth by selectively consuming competitive phytoplankton (Haney 1987).  
 
Given HCBs can strongly affect the distribution, composition, and interactions of zooplankton, a better 
understanding of the indirect impacts of HCBs on aquatic food webs is important for quantifying critical linkages 
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between primary producers and higher trophic levels (Briland et al. 2020). I seek to evaluate the response of 
zooplankton communities to HCBs across 17 reservoirs spanning a gradient of oligotrophic to eutrophic lakes in 
Wyoming. I first seek to understand the spatial distribution of zooplankton species in large reservoirs in 
Wyoming, and evaluate temporal variation in zooplankton species dynamics across these systems to address a 
regional knowledge gap in zooplankton community composition. Second, I will evaluate changes in zooplankton 
species dynamics in the presence of HCBs by exploring changes in species diversity, size structure and biomass. 
Third, I will quantify the underlying physiochemical factors related to HCBs and how these relate to changes in 
zooplankton communities and species abundance.  
 
I hypothesize zooplankton species diversity, size structure and biomass will change after the onset of an HCB 
due to changes in resource availability. I predict zooplankton community diversity, size structure, and biomass 
will decrease with the onset and persistence of an HCB and predict a more pronounced shift in these 
zooplankton metrics in eutrophic lakes that experience an HCB. Understanding the implications of HCBs on 
zooplankton communities and determining how environmental factors interact to shape biological assemblages 
has important implications for natural resource management and species conservation (Zhang et al. 2022) and 
will help mitigate the impacts of climate change on aquatic ecosystems. 

 
2. Methods 

I will conduct this study across 17 reservoirs in Wyoming spanning the gradient of trophic state, size, and 
elevation. Due to the recent implementation of HCB monitoring in 2017 by the Wyoming Department of 
Environmental Quality, it is unclear whether the frequency of blooms in Wyoming has increased, or if there is 
more reporting of the blooms because of the additional monitoring efforts. Across Wyoming, most HCB 
recreational use advisories are issued during late July or August and persist through fall and into winter 
(Wyoming Department of Environmental Quality, https://www.wyohcbs.org/). To understand the impacts of 
HCBs on zooplankton communities, I will sample the reservoirs before and after HCB onset. Reservoirs will be 
sampled monthly from May through October in 2021 and 2022 at three sites longitudinally spaced from 
reservoir inlet to outlet.  
 
2.1 Zooplankton 
At each site, I will use vertical zooplankton tows (64 um mesh, 0.5 m diameter net) conducted to the depth of 
the reservoir for lakes less than 10 meters deep, or to a maximum of 15 meters to sample zooplankton; at times, 
due to high phytoplankton biomass, zooplankton tows will be collected in the top 3 meters of the water column. 
All samples will be collected during daylight hours with best efforts made to sample the entire water column to 
remove the potential influence of diel vertical migration behavior of some species. Zooplankton samples will be 
stored in 250 mL containers and preserved in ethanol. In the laboratory, a minimum of 3 mL of subsample will 
be transferred to a 1 mL Sedgewick rafter cell and individuals will be identified and counted on a dissecting 
microscope (Leica SE6). Lengths of the first 30 individuals for each species or taxonomic group will be measured 
and taxon-specific length-dry mass regression equations will be used to estimate biomass (Culver et al.,1985). 
 
2.2 Physiochemical Attributes 

I will measure a suite of physicochemical attributes at each site using a combination of in situ and grab samplers. 
Water temperature, specific conductivity, dissolved oxygen and pH will be measured at 0.5 meter intervals to 
the same depth as the zooplankton tows using a multisensory probe (YSI ProDSS, Yellow Springs, OH). Water 
transparency will be measured using a Secchi disk at each site. Integrated water samples will be collected 0.5 
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meters below the water surface using a Van Dorn sampler. These samples will be used to quantify nutrients 
(total nitrogen and total phosphorus), cyanotoxins (microcystin and cylindrospermopsin), phytoplankton and 
chlorophyll-a. The samples intended for identifying and counting phytoplankton will be immediately preserved 
with Lugol’s iodine and stored in the dark. All other water samples will be kept on ice after collection until 
laboratory processing. The whole-water nutrient and cyanotoxin samples will be stored frozen at -20 °C within 
24 h of collection. To estimate chlorophyll-a, whole-water samples will be filtered from each site through 0.7 μm 
pore-size filter papers (GF/C Whatman). Filters will be stored in the dark at -20°C until analysis. Chlorophyll-a will 
be extracted in 10 milliliters of 90 % buffered ethanol for 12-24 hours. Subsequently, 2.7 mL of sample will be 
added to a glass cuvette and fluorescence units will be recorded using a Turner Designs AquaFluor Handheld 
Flourometer/Turbidimeter. Then, I will add 90 microliters of 0.1 N hydrochloric acid and record the fluorescence 
units 90 seconds later. I will determine the concentration of chlorophyll-a in the sample by 1) determining the 
amount of chlorophyll-a in the extraction using an instrument-specific standard curve that relates chlorophyll-a 
concentration to the difference between initial fluorescence and fluorescence after acidification and 2) 
correcting for the volume of lake water filtered for the extraction.  
 

2.3 Phytoplankton 
Whole-water samples preserved with Lugol’s will be condensed by pouring a mixed sample into a 250 mL 
graduated cylinder. After these samples are allowed to settle, the top suspension portion will be removed. An 
aliquot of the concentrated sample will be transferred to a Sedgewick rafter cell. I will estimate the average 
number of individual units (e.g., cells, colonies, or filaments) by counting the number of cells in the first 10 
filaments or colonies. Literature derived averages for cells per unit will be used when this is not feasible. A 
minimum of four transects will be examined and identified to species. I will then calculate the number of cells 
per unit volume. 
 
2.4 Cyanotoxins 
Total (intracellular plus extracellular) cyanotoxin (microcystin and cylindrospermopsin) water samples will be 
measured using enzyme-linked immunosorbent assay (ELISA) kits (96-well format, Abraxis). Samples will be 
exposed to two freeze/thaw cycles to rupture cells and release the toxins, and subsequently analyzed with a 
plate photometer.  

2.5 Analysis 
I will use three classical biodiversity indexes (species richness, Simpson’s Diversity Index, and Shannon Diversity 
Index), three functional diversity indexes (functional richness, functional evenness, and functional divergence), 
and zooplankton community size structure to understand zooplankton communities dynamics. To understand 
the spatial distribution of zooplankton species, I will compare these community composition indices within and 
across reservoirs. Additionally, the before-after-control-impact study design will allow me to understand in what 
ways the zooplankton community composition changes in response to HCBs. I will use ordinary least-squares 
regression to relate zooplankton abundance and biomass to measures of lake trophy (Pace 1986). Zooplankton 
biomass will be calculated using mass-length equations from EPA Standard Operating Procedure for Zooplankton 
Analysis 2016 (U.S. Environmental Protection Agency 2016). Last, I will use non-metric multidimensional analysis 
or canonical correlation analyses to visualize abiotic and biotic drivers of community composition and species 
diversity.  
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3. Statement of Importance 
Zooplankton species diversity and abundance can serve as a measure of biological condition and used as an 
indicator of water quality changes (McNaught 1975; US EPA 2021). Because HCBs can alter the structure of 
zooplankton communities and disrupt food web processes, understanding shifts in species and community 
composition is pertinent for predicting future impacts and developing adaptive management plans. 
Understanding the relationship between HCBs and zooplankton communities will help ecologists characterize 
the effects across multiple trophic levels and understand how environmental perturbations influence ecosystem 
services.  
 
4. Research Progress 
We collected all field samples for this research during 2021 and 2022. 2021 zooplankton samples are fully 
processed and we are currently working on processing 2022 zooplankton samples. I plan to process 2022 
phytoplankton, water nutrient, chlorophyll-a and cyanotoxin samples in the next six months. I have not started 
analyses for this research. 
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Chapter 4 
Isotopic Niche Space: Are Harmful Cyanobacterial Blooms Driving Resource Use Shifts In Small-Bodied Fishes? 

 
1. Introduction 
Niche-based processes, such as environmental filtering and biotic interactions, are important divers of community 
composition and diversity. Understanding an organism's niche allows us to better comprehend the structure of 
ecological assemblages including species distribution and range limits, co-occurrence and interspecific 
competition between species, and biodiversity dynamics across multiple gradients (Chase and Myers 2011). 
Interspecific interactions may be altered as a result of climate change (Ogloff et al. 2019), and in aquatic 
ecosystems, HCBs are known drivers of changes in diet selectivity with potential consequences on food web 
interactions (Creed et al. 2018).  
 
HCBs affect plankton diversity, energy transfer across trophic levels, and can alter community composition in lakes 
(Paerl and Paul 2012; Visser et al. 2016; Krztoń et al. 2019; Amorim and Moura 2021). For example, secondary 
metabolites have been found to inhibit growth and photosynthesis in non-HCB species of phytoplankton and 
macrophytes (Zheng et al. 2013; Xu et al. 2016; Wang et al. 2017; Zi et al. 2018) and greatly reduce zooplankton 
species richness (Richman and Dodson 1983; Orcutt and Pace 1984; Briland et al. 2020). Impacts at higher trophic 
levels include sub- or paralethal impacts, such as causing oxidative stress in bighead carp (Sun et al. 2013) and 
reduction in growth rate due to energetic costs of metabolizing cyanotoxins (Pääkkönen et al. 2008). Lethal 
impacts of HCBs include embryonic heart failure in fish embryos (Zi et al. 2018) and system wide fish kills (Jewel 
et al. 2003). Further, HCBs can impact diet selectivity with potential consequences for food web-scale interactions 
(Creed et al. 2018). However, key questions remain unanswered with respect to how HCBs affect the structure of 
aquatic food webs and the foraging abilities of higher consumers (Briland et al. 2020). 
 
Stable isotope analysis is a useful tool for characterizing patterns of resource use and quantifying an organism’s 
trophic niche (Boecklen et al. 2011; Carter et al. 2019; Borrell et al. 2021). Given organismal tissue stable isotope 
signatures reflect diet during the corresponding tissue synthesis time period, consumer tissue is composed of the 
relative proportions of each prey species assimilated, and in some instances, foraging location (Bearhop et al. 
1999; Yeakel et al. 2016). For example, in aquatic ecosystems, pelagic consumers are often depleted in ẟ13C 
relative to littoral consumers; the difference in these consumers has been attributed to reliance on different food 
sources (France 1995). Similarly, stable isotope ẟ15N signatures can reveal an organism’s trophic position, which 
is critical for understanding food web interactions and human-mediated ecosystem disturbance (Hussey et al. 
2014). Niche parameters, such as niche width, can also respond rapidly to changes in intra- and interspecific 
competition and prey availability (Boecklen et al. 2011; Jackson et al. 2011) and help elucidate patterns in food 
webs that are attributable to abiotic and/or biotic variables. 
 
Disentangling the complexities of how biotic interactions, biodiversity, and abiotic environmental factors shape 
species distributions across a landscape is pertinent for conservation of aquatic systems. Research completed by 
Lyles and colleagues (2022) suggests Brook Stickleback Culaea inconstans (an invasive species) and Fathead 
Minnow Pimephales promelas switched from pelagic to littoral resources coinciding with the onset of the HCB at 
Saratoga Lake during 2021. Further, the niche space of Brook Stickleback contracted and subsequently overlapped 
with that of Iowa Darter Etheostoma exile, a species of greatest conservation need, post HCB implying the threat 
of invasive species may be compounded by bloom onset. If the trophic niche space of small-bodied fishes is 
affected by HCBs, the ecosystem wide implications of HCBs could be much more pervasive than previously 
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thought. The findings of Lyle and colleagues (2022) inspired me to further evaluate the effects of HCBs on small-
bodied fish using carbon and nitrogen stable isotope analyses in two lakes in SE Wyoming, one where HCBs occur 
(Saratoga Lake) and one where they do not currently occur (Alsop Lake).  
 
The objectives of this work are to: 

1. Explore the spatiotemporal variation of fish trophic niche dimensions and position across two lakes in 
Wyoming to understand patterns of resource use with respect to species and ontogeny 

2. Evaluate fish trophic niche dimensions with respect to the onset and persistence of HCBs 
3. Quantify trophic niche width and patterns of niche overlap to infer how HCBs affect the potential for 

competitive interactions between species 
 

I hypothesize the trophic niche of Brook Stickleback, Fathead Minnows and Iowa Darter will shift during the 
spawning season as these three species breed in shallow water and may move from deeper waters into the 
shoreline during spawning season; I predict the trophic niche will reflect a shift from pelagic to littoral resource 
use at both Alsop and Saratoga Lake. I also hypothesize fish resource use will shift in Saratoga Lake with the onset 
of the HCB as pelagic zooplankton prey availability will decrease and fishes may migrate to nearshore water to 
optimize foraging opportunity. I predict we will see an additional signature of resource use shift from pelagic to 
littoral with the onset of the HCB in Saratoga Lake; I do not predict a secondary shift in resource use from pelagic 
to littoral at Alsop Lake, which is serving as my HCB control as we currently do not observe HCBs there. 
Additionally, I predict trophic niche overlap will be greater between species in Saratoga Lake than Alsop Lake due 
to the presence of HCBs and the indirect food web implications. Quantifying trophic niche width and patterns of 
niche overlap will help us better understand how harmful algal blooms affect interactions between fish species. 
 

2. Methods 
 

2.1 Study Sites 
Samples for stable isotope analysis will be collected biweekly from May to October 2022 in two small reservoirs 
in SE Wyoming: Saratoga Lake and Alsop Lake. Brook Stickleback, Iowa Darter, and Fathead Minnow are present 
in Saratoga Lake; Iowa Darter and Fathead Minnows are present in Alsop Lake. Saratoga Lake experiences severe 
harmful cyanobacterial blooms annually, with water cyanotoxin levels routinely exceeding thresholds set by the 
Wyoming Department of Health (Wyoming Department of Environmental Quality 2022). Alsop Lake does not have 
a history of HCBs and serves as the control in this study.  
 
2.2 Fish Sampling 
 
Fish will be collected using a dip-net and miniature fyke net. 20 fish from each species of interest will be collected 
for stable isotope analysis; fish will be euthanized with an overdose of Aqui-S20E and placed in a jar with native 
lake water. Samples will immediately be placed on ice and frozen at -20 C until future processing. 
 
2.3 Prey Sampling 
To assess stable isotope composition of prey, I will collect whole-body invertebrate samples during each fish 
sampling event. Nearshore horizontal zooplankton tows and off-shore vertical zooplankton tows (64 um mesh, 
0.5 m diameter net) will be collected and immediately placed on ice. Macroinvertebrates will be collected from 
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nearshore environments using dip nets and placed on ice. All samples will be frozen at -20 C until future 
processing.  
 

2.4 Stable Isotope Processing  
Fish muscle fillets and livers from each individual will be extracted and oven dried at 60 C for 48 hours in centrifuge 
tubes. Fish stomachs will be collected and stored in ethanol. I will dry muscle tissue and homogenize it using a 
pestle in centrifuge tubes. Zooplankton samples will be sieved at 153 microns, dried at 60C for 48 hours, then 
sonicated for two minutes and manually sorted to remove phytoplankton. Macroinvertebrate samples will be 
separated by taxonomic order and placed in centrifuge tubes. Prey samples will be dried at 60 C for 48 hours. All 
stable isotope samples will be weighed to the nearest 0.001 mg before being packed into 3.5-mm x 5-mm tin 
capsules. Samples will be analyzed for stable isotopes of carbon and nitrogen at the University of Wyoming Stable 
Isotope Facility using an elemental analyzer (Carlo Erba 1110) connected to a continuous flow isotope ratio mass 
spectrometer (Finnigan Delta V). Carbon (ẟ13C) and nitrogen (ẟ15N) isotopic composition will be reported with 
respect to standards of Vienna PeeDee Belemnite and atmospheric nitrogen, respectively, and expressed in parts 
per thousand (per mille, ‰). 
 

2.5 Statistical Analysis 
I will use values of ẟ13C and ẟ15N to describe trophic niche metrics including niche area, overlap between species, 
and to understand both resource source (i.e., pelagic vs littoral; 13C range) and trophic range (ẟ15N range). All 
measures of trophic niche will be grouped by pre- and post-HCB onset to understand how resource use varies in 
the presence of HCBs. Trophic niche widths will be compared using a simple variance ratio test (F-test, Bearhop 
et al. 1999). Wilcoxon Rank-Sum tests will be used to examine differences between stable carbon and nitrogen 
isotope values (Ogloff et al. 2019). Niche overlap will be quantified using standard ellipse areas corrected for small 
sample sizes, which represent the standard deviation around the bivariate mean and encompass ~40% of the data 
points (Ogloff et al. 2019). Niche overlap will also be quantified using 95% ellipse areas (encompassing 95% of the 
data points), which represent the isotopic niche of each population as a whole rather than the core isotopic niche. 
Additionally, muscle δ13C and δ15N will be analyzed using the SIBER package (Jackson et al. 2011) to quantify 
isotopic niche breadth and overlap. To test for potential ontogenetic shifts in isotopic composition, I will use linear 
regressions of isotope values on fish body length and use analyses of variance to compare isotope values among 
groups (i.e. temporal timing pre HCB vs post HCB, and with respect to spawning).  
 
3. Expected Outcomes 
Using stable isotope analysis to estimate trophic niche width provides a robust and powerful metric for 
understanding resource acquisition and allocation, prior diet, trophic relationships and constructing food webs 
(Boecklen et al. 2011; Jackson et al. 2011; Ben-David and Flaherty 2012). Quantifying the trophic level impacts of 
HCBs is pertinent for understanding ecosystem wide impacts of this increasingly prevalent threat to aquatic 
ecosystems. This research will provide insight to how the niche dimensions and position across space, time, and 
ontogeny, reveal potential overlap between species, and elucidate patterns of resource use allocation in small-
bodied fishes in light of harmful cyanobacterial blooms.  
 
4. Research Progress 
I sampled Saratoga and Alsop Lakes bimonthly from May to September 2022 and collected fish and prey samples. 
All fish samples have been processed and we submitted fish muscle samples to the University of Wyoming Stable 
Isotope Facility (UW SIF) for δ13C and δ15N analysis in late October 2022. Macroinvertebrate prey samples are 
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dried, tinned, and ready for submission to the UW SIF. We are currently processing zooplankton prey samples and 
refining our methods for separating zooplankton from phytoplankton for samples collected during severe HCBs. I 
plan to submit our prey samples to the UW SIF for analysis after we finish processing the zooplankton samples. I 
have not received stable isotope results and have not started the analysis phase. 
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INTRODUCTION
Fresh surface waters, or lakes and streams, are among the world’s most important and

most threatened resources. Only 0.26 % of all available freshwater on the globe is surface water
(Shiklomanov, 2000), which must be shared among all living things. Freshwaters experience the
greatest and fastest changes of all ecosystems, after lands converted for agriculture (Carpenter et al.,
2011). Among the serious forces that threaten freshwater health is the dramatically altered global
nutrient flux (Falkowski et al., 2000). Nitrogen (N) and phosphorus (P) in particular are heavily
associated with eutrophication of freshwaters. Eutrophication is a natural process of aging surface
waters and results in ’greening,’ through which productivity is enhanced by nutrient enrichment.
Cultural eutrophication is the acceleration of the process via anthropogenic nutrient inputs (Dodds
& Whiles, 2020). Despite the potential to cause eutrophication, nutrients are essential for freshwater
quality and biodiversity.

N and P are inherently linked through organisms, food webs, and ecosystems because these
nutrients are required for protein synthesis, cellular metabolism, growth, bone synthesis, and other
biological structures and functions. N and P also regulate each other’s dynamics at every point
along the continuum of cells to the biosphere. Because N and P are used by all organisms on
Earth, they are constantly recycled through food webs and ecosystems. Nutrient dynamics and
stoichiometry provide tools to connect various components of ecosystems. Ecological stoichiometry
aims to assess if/how much variation in ecology can be understood by simplifying the intricate
details and complexities of ecological interactions into fundamental chemical basis of life (e.g., N
and P) (Sterner & Elser, 2002).

In this context, it is imperative to emphasize the need for a holistic approach when studying
nutrient dynamics in freshwater ecosystems. While in-depth studies focusing on specific mechanisms
and processes within niche systems hold significant value, there is equal importance in adopting a
broader perspective that encompasses entire watersheds, networks, and regional to continental scales.
While N:P stoichiometry is notoriously difficult to predict (Collins et al., 2017), stoichiometric
variation drives research questions. For example, while there are many biogeochemical processes
that can influence N:P stoichiometry, nutrient sourcing composition (which can be infinitely varied
within a watershed) can be a large determinant (Downing & McCauley, 1992).

I have developed a research plan that addresses the roles of co-nutrient dynamics at a range
of spatial scales. My research engages the biogeochemical coupling of N and P (Sterner & Elser,
2002), the intimate connection of freshwaters to each other and the landscape (Wurtsbaugh et al.,
2019), and societal and cultural relevance of freshwaters (Kondolf & Pinto, 2017). My work asks
fundamental questions on reservoir management (chapter 2) and lake-river network connectivity
(chapter 3) to broad-scale nutrient limitation (chapter 1) and productivity (chapter 4).

My work is conducted at multiple scales, including broadly across stolen land (https:
//native-land.ca/). My acknowledgement seeks to honor the rich culture of the indigenous people
and remind us that the land is sacred. I recognize my work is centered around the natural world,
which has been negatively impacted by colonialism.
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Figure 1: Freshwater nutrient dynamics vary across spatial and temporal scales. Patterns in nutrient limitation and
trophic state vary across space and time and may influence management decisions (chapter 1). But sometimes in-lake
dynamics and local context matter most for mitigating water quality problems (chapter 2). Nutrient dynamics exhibit
variability along a continuum of linked freshwater lakes and rivers, which is further diversified by seasonal influences
(chapter 3). Finally, in-lake nutrient and productivity trends may integrate and form larger scale patterns, revealing
underlying factors contributing to stoichiometric imbalances and water quality (chapter 4). Within each chapter,
understanding the interconnectedness of nutrients is paramount, as these elements are tightly linked across various
biological levels, from cellular processes to the functioning of entire ecosystems. Moreover, N and P play pivotal roles
in regulating each other’s dynamics, highlighting the intricate balance that exists within nutrient cycles. By recognizing
these fundamental connections, we can gain deeper insights into the complexities of ecological interactions and better
appreciate the chemical underpinnings of life itself.
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CHAPTER 2: Nutrient budgets and influences on productivity in a critical
Wyoming water source

Collaborators: Sarah M. Collins, Kelsee Hurshman, Lindsay Patterson, Ron Steg, Samuel J. Sillen
Status: Planning with DEQ, data analyses ongoing

We respectfully acknowledge and recognize this work is conducted on the stolen lands and
water of the Tséstho’e (Cheyenne), Newe Sogobia (Eastern Shoshone), Apsáalooke (Crow), Očhéthi
Šakówiŋ, and Cayuse, Umatilla and Walla Walla People. Boysen reservoir currently resides on the
Wind River Reservation.

Research Questions

The goal of this chapter is to understand nutrient dynamics in Boysen Reservoir and to assist
the Wyoming Department of Environmental Quality (DEQ) in reaching their nutrient reduction and
harmful algal bloom mitigation goals. We aim to answer the following questions:

• What spatial frequency is sufficient to characterize nutrient loading and water quality?
– What information do we get from each of the 7 monitored sites?

• What (reservoir heterogeneity, timing of loading, water level, in-reservoir dynamics) is driving
changes or lack of changes in water quality?

• How are nutrients influence phytoplankton dynamics?
– Does nutrient loading and/or nutrient stoichiometry correlate with phytoplankton density

dynamics?
– Are there nutrient thresholds associated with changepoints in phytoplankton community

structure shifts or densities?
– What are nutrient management targets to prevent harmful densities of cyanobacteria?

Introduction

Reservoirs serve as critical human resources for drinking water, irrigation, navigation, flood
control, hydropower, recreation, and fisheries (Marzolf & Robertson, 2006). These man-made
waterbodies (via dams) fundamentally alter biology and nutrient dynamics by changing the movement
of water, biota, and solutes (Hayes et al., 2017). Additionally, reservoirs typically serve as settling
basins for sediments, nutrients, and other solutes (Syvitski et al., 2009). It is crucial to understand
drivers of water quality within reservoirs because of the importance of reservoirs and high demand
for water. And while some parts of reservoirs behave similarly to lakes, there are physical differences
that can lead to variation in drivers.

Reservoirs are even more intimately connected to the landscape than lakes because they drain
substantially greater catchment areas and have greater perimeters, thus more land-water connection,
than lakes (Hayes et al., 2017). Reservoirs are particularly critical in the arid mountain western
U.S. and have a played a large role in full development of the western U.S. as they allowed for boat
travel, agricultural irrigation, and water storage (Marzolf & Robertson, 2006). Reservoirs can be
divided into three zones illustrating key areas within a single reservoir that vary in their physical
structure and biogeochemical function: river, transitional, and lacustrine (Kennedy et al., 1985).
The riverine zone is narrow and channelized and often has greater nutrient input, turbidity, and lower
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light availability, and is typically more eutrophic than other portions of the reservoir. The lacustrine
zone is the broadest and deepest zone that functions most similarly to a natural lake. There is little
flow and it tends to be more oligotrophic with less direct nutrient input and more internal nutrient
recycling. The transitional zone is characterized as a gradient between the riverine and lacustrine
zone with intermediate physical and biogeochemical characteristics (Marzolf & Robertson, 2006).

Cultural eutrophication and harmful algal blooms are among the top threats to water quality
and biodiversity worldwide with excess N and P as arguably the most important contributor to
eutrophication (Conley et al., 2009; Reid et al., 2019; Smith & Schindler, 2009). In the Western U.S.,
increased awareness and monitoring of eutrophication and harmful algal blooms in freshwaters has
pointed toward eutrophication in this region. However, long-term satellite imagery has suggested
there is no evidence of changing water quality and rather most lakes in this region have been static
for the past several decades (Oleksy et al., 2022; Sillen et al., 2023). Since reservoirs typically drain
greater catchments than natural lakes, eutrophication can occur more rapidly with variable nutrient
dynamics in the reservoir zones (Marzolf & Robertson, 2006) and photic zones of reservoirs have
been found to be shallower (Hayes et al., 2017).

Over the past 6 years, Wyoming Department of Environmental Quality (DEQ) has routinely
listed a Harmful Cyanobacterial Bloom Advisories for Boysen Reservoir (see https://wdeq.maps.
arcgis.com/apps/Shortlist/index.html?appid=342d22d86d0048819b8dfa61dd3ff061). It is a cul-
turally significant waterbody that is used for recreation and drinking water supply, but harmful
cyanobacterial blooms threaten the water quality and ecosystem services provided by the reservoir
(of Environmental Quality, 2023). Thus, Boysen is considered a high priority for implementation of
proactive nutrient reduction as part of the Wyoming Nutrient Strategy.

Methods

Data Description
Boysen Reservoir located on the Wind River, about 23 km south of The Wedding of the Waters,

where the Bighorn River changes names to Wind River. Since 2020, the DEQ collects monthly data
between May and October from seven locations along the reservoir (Figure 5). Collections include
alkalinity, orthophosphate, total ammonia, secchi depth, chlorophyll-a, total P, total N, and nitrate,
and water column profile data for specific conductance, dissolved oxygen, pH, and water temperature.
Additionally, monthly counts of phytoplankton are identified to the genus/species/variety level. The
U.S. Geological Survey (USGS) monitors the three major tributaries for continuous discharge and
nutrients on a monthly basis (total N, orthophosphate, and total P). The USGS also monitors the
outlet for monthly nutrient concentrations. Wind River outlet discharge water level data are available
from the U.S. Department of the Interior Bureau of Reclamation. The University of Wyoming
operates a buoy within the pelagic section of the reservoir with water column profile temperature
data, and surface water productivity data (see https://limno.io/station/boysen/).

Data Analysis
As part of my collaboration with the Wyoming DEQ, this chapter will address how monitoring

sites differ and if seven sites is necessary to fully characterize water quality in Boysen Reservoir.
We will examine lake heterogeneity, biogeochemical loading, and in-reservoir dynamics and their
influence on water quality. We will also analyze nutrient concentration and stoichiometry thresholds
associated with changes in phytoplankton community structure changes.
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Figure 5: Map with Boysen Reservoir and tributaries. The yellow points are the sampling locations in Boysen Reservoir
that represent various parts of the reservoir (i.e., river, transitional, and lacustrine). The pink points represent the
tributaries and outlet. The direction of flow is toward the north.

We plan to develop monthly tributary and outlet nutrient budgets to quantify spatial and
temporal input and output dynamics. Additionally, we will quantify in-reservoir nutrient dynamics
using bathymetry data and monthly nutrient concentrations. We will then examine corresponding
phytoplankton communities and assess correlations between changes in community dynamics and
nutrient inflows using changepoint analyses. We will also assess at which nutrient concentrations
and ratios cyanobacteria are present/abundant.

We will examine differences at each of the seven monitoring locations, including in nutrient
concentrations and stoichiometry, phytoplankton communities, and water column profiles of the
water quality parameters to understand the differences in the various parts of the reservoir and if any
monitoring locations are redundant. To examine in-reservoir dynamics that might influence water
quality, we plan to test for statistical differences in profiles and Schmidt’s Stability (a measure of
resistance to mixing (Idso, 1973; Schmidt, 1928)). Correlations between parameters and spatial
patterns will be assessed using Empirical Orthogonal Function (EOF) and Principle Component
(PC) analyses. EOF analyses are useful for examining spatiotemporal and multivariate patterns, and
may help us determine which parts of the reservoir are most influenced by nutrients or other in-lake
dynamics. PC analyses summarize multivariate trends into digestible formats and are especially
useful when exploring many parameters.
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Expectations

We expect to see distinct differences in nutrient concentrations and stoichiometry, productivity,
and water quality parameters between the sampling locations within the reservoir based on whether
they are riverine (narrow basin, channelized like a river), transitional (intermediate portion between
riverine and lacustrine), or lacustrine zones (most similar to a natural lake, broadest and deepest
portion) (Kennedy et al., 1985), but less differences between sites of the same type. Additionally,
we expect in-reservoir stratification and mixing dynamics to have high correlation with productivity,
rather than nutrient loading, which likely occurs in extreme values early in summer.

Selected data exploration

Figure 6: Raw P data from all sampling locations and events, May-October. November-April are greyed out on figures.
Orthophosphate concentrations in the top row and total P concentrations in the bottom row. Various sampling location
types are represented by colors and in-reservoir concentrations are in the first column with river concentrations in the
second column. Detection limits for reservoirs are represented by horizontal lines.

There were consistently higher nutrient concentrations in the inlets than in-reservoir or in
the outlet, which more closely matched the in-reservoir concentrations (Figures 6, 7). Outlet
concentrations were especially similar to the lacustrine concentrations, which is close in proximity
to the outlet. Despite not being the main sources of water, the minor inlets tended to have higher
nutrient concentrations than the Wind River major inlet.

There were also substantial annual and inter-annual variation in nutrient concentrations.
Ammonia concentrations were typically less than nitrate, with the lacustrine portion of the reservoir

11



L.A. Rock dissertation proposal

Figure 7: Raw N data from all sampling locations and events, May-October. November-April are greyed out on
figures. Nitrate plus nitrite in-reservoir concentrations are presented in the top left panel, total ammonia in-reservoir
concentrations are in the top right panel, and total N concentrations in the bottom panel, with in-reservoir and river
concentrations separated for better viewing. Various sampling location types are represented by colors. Detection limits
for reservoirs are horizontal lines. The three forms of N are collected from the reservoir but only total N is collected in
the rivers.

having the highest nitrate concentrations in October of each year (Figure 7). For total N and P,
outlet concentrations show little seasonal variation, suggesting the reservoir serves as a nutrient sink,
buffering the outflow concentrations. However, orthophosphate shows seasonality with the highest
inlet and in-reservoir concentrations during the spring months and highest outlet concentrations
during the fall months, suggesting an abundance of P in this system (Figure 6).

Significance Statement

Tailoring one of my studies to directly address the questions and work toward the goals of
the Wyoming DEQ is a great way to expand my skills into the management realm. This study
will translate the needs of DEQ into quantifiable results that will work toward the development of
reservoir-specific nutrient thresholds to protect the water quality of a culturally important water
resource. Furthermore, eutrophication can have serious consequences for aquatic habitats and
ecosystem services including decreased water clarity, decreased water column oxygen, increase
in toxic compounds (Camargo & Alonso, 2006; Conley et al., 2009). Eutrophication can also
result in high economic costs (Dodds et al., 2008; Keiser et al., 2019). Increased knowledge of the
context-dependent water quality drivers in Boysen Reservoir may inform management decisions.
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