### This is a digital document from the collections of the *Wyoming Water Resources Data System* (WRDS) Library.

For additional information about this document and the document conversion process, please contact WRDS at <u>wrds@uwyo.edu</u> and include the phrase "Digital Documents" in your subject heading.

To view other documents please visit the WRDS Library online at: <u>http://library.wrds.uwyo.edu</u>

### Mailing Address:

Water Resources Data System University of Wyoming, Dept 3943 1000 E University Avenue Laramie, WY 82071

> Physical Address: Wyoming Hall, Room 249 University of Wyoming Laramie, WY 82071

Phone: (307) 766-6651 Fax: (307) 766-3785

Funding for WRDS and the creation of this electronic document was provided by the Wyoming Water Development Commission (<u>http://wwdc.state.wy.us</u>) 51.1245 (Little Bighorn River)

REPORT ON THE FEASIBILITY OF PROVIDING INSTREAM FLOW IN THE LITTLE BIGHORN RIVER FLOW SEGMENT NO. 1 TEMPORARY FILING NO. 26 5/339

July 1991

Prepared For:

WYOMING WATER DEVELOPMENT COMMISSION Herschler Building Cheyenne, Wyoming 82002

Prepared By:

Western Water Consultants, Inc. 611 Skyline Road Laramie, <u>Wyo</u>ming 82070



701 Antler Dr. - Suite 233 Casper, Wyoming 82601 1949 Sugarland Dr. - Suite 134 Sheridan, Wyoming 82801

estern nsultants, Inc.



PROPERTY OF Water Resources Data System Wyoming Water Library University of Wyoming

307-766-6661

## BIGHORN RIVER INSTREAM FLOW TABLE OF CONTENTS

| I.       | Summary                        | 1                          |
|----------|--------------------------------|----------------------------|
| II.      | Water Rights                   | 5                          |
| III.     | Streamflow Records             | 8                          |
| IV.      | Hydrology                      | 12                         |
| IV<br>IV | 1 Methodology                  | 12<br>15<br>18<br>20<br>20 |
| V.       | Mean Monthly Flow Analysis     | 21                         |
| VI.      | Dry Year Flow Analysis         | 24                         |
| VII.     | Reservoir Operation Study      | 31                         |
| VIII.    | Daily Flow Exceedence Analysis | 33                         |
| IX.      | Conclusions                    | 38                         |
| Refe     | ences                          | 39                         |

## LIST OF APPENDICES

## <u>Appendix</u>

I Wyoming Game and Fish Report

## **BIGHORN RIVER INSTREAM FLOW TABLE OF CONTENTS (continued)**

### LIST OF FIGURES

## **Figure**

| 1 | Location Map                                   | • | • | • | • | • | 2  |
|---|------------------------------------------------|---|---|---|---|---|----|
| 2 | Average Monthly and Requested Flow Comparison. | • | • | • | • | • | 23 |
| 3 | Driest Year and Requested Flow Comparison      | • | • | • | • | • | 27 |
| 4 | 3-Driest Year Average and Request Comparison   |   | • | • | • | • | 30 |
| 5 | Daily Duration Curves, Oct. 1 - Nov. 15        | • | • | • | • | • | 34 |
| 6 | Daily Duration Curves, Nov. 6 - Mar. 31        | • | • | • | • | • | 35 |
| 7 | Daily Duration Curves, Apr. 1 - June 30        | • | • | • | • | • | 36 |
| 8 | Daily Duration Curves, July 1 - Sept. 30       | • | • | • | • | • | 37 |
|   | -                                              |   |   |   |   |   |    |

### LIST OF TABLES

## <u>Table</u>

| Wyoming Water Rights                                            | 6                                       |
|-----------------------------------------------------------------|-----------------------------------------|
| Little Bighorn River near Parkman, Wyoming                      | 9                                       |
| Little Bighorn River at State Line near Wyola, Wyoming          | 10                                      |
| Little Bighorn River: Generated Flows at Downstream End of      |                                         |
| Instream Flow Segment No. 1                                     | 16                                      |
| Ranking of Flows in Ascending Order                             | 25                                      |
| Comparison of Monthly Flows During Driest Year on Record (1961) | 26                                      |
| Comparison of Monthly Flows During the Average of 3 Driest      | 20                                      |
| Years by Period and Requested Flows                             | 29                                      |
| Summary of Annual Flow Shortages and Excesses Little Bighorn    |                                         |
| River at Proposed Instream Flow Segment                         | 32                                      |
| Daily Flow Exceedence Summary Little Bighorn River              | 33                                      |
|                                                                 | <ul> <li>Wyoming Water Rights</li></ul> |

### Page Page

Page

### DRAFT Report on the Feasibility of Providing Instream Flow in the Little Bighorn River Instream Flow Segment No. 1 Temporary Filing No. 26 5/339

### Wyoming Water Development Commission July 1991

### I SUMMARY

The Wyoming Water Development Commission (WWDC) is required by W.S. 41-3-1004(a) to determine the feasibility of providing various amounts of unappropriated direct flow water for instream uses within stream segments as requested by the Wyoming Game and Fish Department (WGFD). For the Little Bighorn River, WWDC contracted with Western Water Consultants, Inc. (WWC) of Laramie, Wyoming to prepare the technical study. The WGFD has requested, under Temporary Filing No. 26 5/339, a direct flow water right for purposes of providing instream flow for fisheries in a segment of the Little Bighorn River upstream of Parkman, Wyoming. The amounts of flow requested by season are: 60 cubic feet per second (cfs) for the period October 1 - November 15; 50 cfs for the period November 16 - March 31; 60 cfs for the period April 1 to June 30; and 62 cfs for the period July 1 to September 30. The Little Bighorn River - Instream Flow Segment No. 1 is defined by an upstream point located at the confluence of the Little Bighorn River and Dry Fork Creek in the NE1/4 NW1/4 of Section 12, Township 57 North, Range 90 West and a downstream point located where the river crosses the north boundary line of the SW1/4 SW1/4 of Section 20, Township 58 North, Range 89 West, all in Sheridan County, Wyoming. The segment has a stream length of approximately 4.39 miles, and the location of the segment is shown on Figure 1.

1



Mean monthly flow, dry year flow, and daily flow exceedence analyses were conducted for the Little Bighorn River at the lower end of the proposed Instream Flow Segment No. 1. The mean monthly flow analysis shows that on the average, the requested flows are available in their entirety except for slight shortages during the months of January, February, and March and by one cfs for the period of November 1-15. The following tabulation summarizes the estimated mean monthly discharge at the downstream end of the instream flow segment and the requested flows.

|            | Mean      | Requested |
|------------|-----------|-----------|
| Month      | Discharge | Discharge |
| Month      |           |           |
| October    | 66        | 60        |
| November:  | (57)      |           |
| Nov. 1-15  | 59        | 60        |
| Nov. 16-30 | 55        | 50        |
| December   | 52        | 50        |
| January    | 47        | 50        |
| February   | 42        | 50        |
| March      | 45        | 50        |
| April      | 61        | 60        |
| May        | 261       | 60        |
| June       | 463       | 60        |
| July       | 181       | 62        |
| August     | 99        | 62        |
| September  | 72        | 62        |

During extremely dry years the requested flows are available only during the months of May, June, and July.

A daily flow-duration analysis was conducted for each of the four periods throughout the year. The flow of 60 cfs requested by the WGFD for the period October 1 through November 15 is available approximately 67% of the time, the requested flow of 50 cfs for

3

the period November 16 to March 31 is available 48% of the time, and the flow of 60 cfs requested for the period of April 1 through June 30 is available 84% of the time. The mean discharge of 62 cfs requested for the critical period July 1 to September 30 is available 86% of the time. WGFD considers that if the requested flows are available at least 50% of the time during the period of July 1 through September 30, their criteria are satisfied. The WGFD has not developed exceedence criteria for other times of the year but has stated that during these periods the flow should equal natural flows up to the requested amounts.

### II WATER RIGHTS

Current water rights and permits for diversion or use on the Little Bighorn River or its tributaries located upstream of the downstream end of the proposed Instream Flow Segment No. 1 are tabulated in Table 1. Both direct flow and storage rights are listed.

While there were several large water rights filed in the mid 1930's within and above Instream Flow Segment No. 1 there is no evidence that these rights have been developed. According to the USGS, there are diversions for only 163 acres above the State Line gage and those diversions are below the proposed Instream Flow Segment No. 1. Adjudicated direct flow water rights above and within the instream flow segment total to 0.11 cfs. Adjudicated storage rights for three stock reservoirs above and within the instream flow segment total 1.54 acre-feet.

Approximately 45,000 acre-feet per year has been appropriated in and by the State of Montana (EIS). Flows of the Little Bighorn River were not specifically allocated in the Yellowstone River Compact. No other interstate compact or court decree covers allocation of the waters of the Little Bighorn River.

A number of temporary filings are on file with the Wyoming State Engineer's Office for potential developments above or within the instream flow segment. These consist of large scale diversion and storage projects which, if constructed, would have a significant impact on the streamflows for this river. Temporary filings and permits for direct flow water rights above and within the instream flow segment total 1,532 cfs. Temporary filings and permits for storage rights that could potentially be developed to use flows above and within

5

## Table 1 WYOMING WATER RIGHTS

## From the Little Bighorn River and Tributaries Upstream of the Downstream End of Instream Flow Segment No. 1

| Permit    | Proof<br>Number | Facility                                 | Source                                      | Pr  | ority D   | ate v | Amount     | Use*   | Adj./<br>Unadi | Diversion Location |    |        |
|-----------|-----------------|------------------------------------------|---------------------------------------------|-----|-----------|-------|------------|--------|----------------|--------------------|----|--------|
|           |                 |                                          |                                             | 111 | <u>IZ</u> |       | <u>_</u>   |        | Onauj.         |                    |    | IN Ber |
| DIRECT FI | .ow             |                                          |                                             |     |           |       |            |        |                |                    |    |        |
| 18584     |                 | Placer Ditch                             | S. Fk. Little Bighorn R.                    | 4   | 1         | 1935  | 10.80      | 9      | Unadj.         | 21                 | 56 | 91     |
| 18658     |                 | Taylor Ditch                             | Dayton Gulch                                | 5   | 27        | 1936  | 28.00      | 9      | Unadj.         | Unsur,             | 56 | 90     |
| 18656     |                 | James M. Taylor Ditch                    | Half Oz. Gulch                              | 5   | 27        | 1936  | 8.90       | 9      | Unadj.         | 23                 | 56 | 91     |
| 18655     |                 | John Mathews Ditch                       | Half Oz. Gulch                              | 5   | 27        | 1936  | 7.20       | 9      | Unadj.         | 23                 | 56 | 91     |
| 18941     |                 | Hawkes Ditch                             | Lick Creek                                  | 10  | 7         | 1936  | 28.00      | 9,SS   | Unadj.         | Unsur,             | 56 | 90     |
| 18827     |                 | Great Scott Ditch                        | Little Big Horn R.                          | 12  | 10        | 1937  | 66.50      | 9      | Unadj.         | 23                 | 56 | 91     |
| 23955     |                 | Little Big Hom - East Twin Ck P.L.       | Little Big Hom R.                           | 8   | 25        | 1972  | 150.00     | 6      | Unadj.         | 36                 | 58 | 90     |
| 22 3/110  |                 | Beatty Gulch Enl. of Little              | Little Big Horn R.                          | 10  | 15        | 1975  | 300.00     | 6      | Unadj.         | 36                 | 58 | 90     |
|           |                 | Big Horn - East Twin Ck. P.L.            |                                             |     |           |       |            |        |                |                    |    |        |
| 22 5/157  |                 | Little Big Horn Tunnel & Canal Diversion | Little Big Horn R.                          | 3   | 29        | 1976  | 1,000.00   | 6      | Unadj.         | 36                 | 58 | 90     |
| 27974     | 33242           | Fitzgerald-Warner Pipeline               | Fitzgerald Spring                           | 1   | 22        | 1980  | 0.03       | 9      | Adj.           | 30                 | 58 | 89     |
| 23 1/258  |                 | Little Big Hom Pipeline                  | Little Big Hom R.                           | 2   | 8         | 1980  | 82.00      | 6      | Unadj.         | 30                 | 58 | 89     |
| 27975     | 33243           | Canyon Pipeline                          | Fitzgerald Spring                           | 4   | 13        | 1981  | 0.056      | 9      | Adj.           | 30                 | 58 | 89     |
| 6723E     | 33244           | Edington Enl. of Fitzgerald Warner P.L.  | Fitzgerald Spring                           | 6   | 22        | 1981  | 0.015      | 9      | Adj.           | 30                 | 58 | 89     |
| 26 5/339  |                 | Little Big Horn River Ins. Flow Seg #1   | Little Big Hom R.                           | 3   | 6         | 1989  | 62.00      | 11     | Unadj.         | 20                 | 58 | 89     |
| RESERVO   | IRS             |                                          |                                             |     |           |       |            |        |                |                    |    |        |
| 7477R     |                 | Parkman Reservoir                        | Little Big Hom R.                           | 8   | 25        | 1972  | 42,580 AF  | 10     | Unadi.         | 34                 | 58 | 87     |
| 22 1/110  |                 | Beatty Gulch Res.                        | Little Big Hom R.                           | 10  | 15        | 1975  | 27,805 AF  | 10     | Unadj.         | 7                  | 57 | 83     |
| 23 5/258  |                 | Fuller No. 2 Res.                        | Drainage of Muir Draw<br>- Little Bighom R. | 2   | 8         | 1980  | 1593.62 AF | 1,8,10 | Unadj.         | 22                 | 58 | 89     |
| 23 4/258  |                 | Enl. Fuller Reservoir No. 1              | Red Gulch Ck.<br>- Little Bighom R.         | 2   | 8         | 1980  | 22,829 AF  | 8,10   | Unadj.         | 16                 | 58 | 89     |
| 23 2/364  |                 | Dry Fork Reservoir                       | Dry Fork Creek                              | 10  | 24        | 1980  | 30.671 AF  | 10     | Unadj.         | 28                 | 57 | 89     |
| 23 3/364  |                 | Half Ounce Reservoir                     | Little Big Horn R.                          | 10  | 24        | 1980  | 34.224 AF  | 10     | Unadi.         | 12                 | 56 | 91     |
| 9030SR    |                 | Burnt Mtn. Stk. Res.                     | Bo Draw                                     | 6   | 30        | 1982  | 0.77 AF    | 3      | Unadj.         | 3                  | 56 | 91     |
| 9034SR    | 33435           | Lake Creek Sik Res.                      | Lake Creek                                  | 6   | 30        | 1982  | 0.77 AF    | 3      | Adj.           | 6                  | 55 | 90     |
| 9061SR    | 33429           | Cow Camp Stock Res.                      | Cow Creek                                   | 12  | 22        | 1982  | 0.77 AF    | 3      | ۸dj.           | 3                  | 57 | 90     |

| * Use Description        |                          |
|--------------------------|--------------------------|
| 1 = Irrigation           | 7 = BLM Water Use        |
| 2 = Domestic             | 8 = Municipal Use        |
| 3 = Stock                | 9 = Miscellaneous Use    |
| 4 = Highway Department   | 10 = Industrial          |
| 5 = Power                | 11 = Instream How        |
| 6 = Reservoir Conveyance | SS = Supplemental Supply |

6

the instream flow segment are approximately 160,000 acre-feet. This compares with the calculated average annual discharge at the bottom of the instream flow segment of approximately 87,500 acre-feet. It is obvious that several of the storage rights are mutually exclusive with no chance of developing all of them. Parkman, Beatty Gulch and Fuller Reservoir facilities are located outside of the instream flow drainage area, and could be partially supplied from other sources.

### III STREAMFLOW RECORDS

Two United States Geological Survey (USGS) streamflow gaging stations were used to estimate flow at the downstream end of the proposed instream flow segment. These gaging stations and the period for which records are available are:

- 1. Little Bighorn River near Parkman, Wyoming; Station Number 062889.60; 1970-1972.
- 2. Little Bighorn River at State Line near Wyola, Wyoming; Station Number 062890.00; 1939-Current.

The gaging station Little Bighorn River near Parkman, Wyoming (Station Number 062889.60) is approximately 700 feet upstream from the downstream end of the instream flow segment. As there are no tributaries in this 700 feet, flows at the Parkman station represent flows for the downstream end of the instream flow segment. The gaging station Little Bighorn River at State Line near Wyola, Wyoming (Station Number 062890.00) is approximately 4 miles downstream from the downstream end of the instream flow segment and has 50 years of record. The published mean monthly flow data for these two stations are presented in Tables 2 and 3, respectively.

## TABLE 2 LITTLE BIGHORN RIVER NEAR PARKMAN, WYOMING Station No. 062889.60 Average Monthly Flows (cfs)

| YEAR      | OCTOBER | NOVEMBER | DECEMBER | JANUARY | FEBRUARY | MARCH | APRIL | MAY    | JUNE   | JULY   | AUGUST | SEPTEMBER | ANNUAL<br>TOTAL (AF) |
|-----------|---------|----------|----------|---------|----------|-------|-------|--------|--------|--------|--------|-----------|----------------------|
| 1970      | 72.13   | 63.20    | 57.48    | 52.74   | 50.71    | 48.58 | 52.40 | 338.19 | 822.80 | 280.10 | 136.71 | 101.93    | 125,345              |
| 1971      | 80.97   | 69.10    | 60.13    | 54.39   | 44.11    | 47.13 | 58.50 | 273.68 | 562.30 | 182.10 | 103.03 | 76.97     | 97,360               |
| 1972      | 70.94   | 66.53    | 53.94    | 49.35   | 51.45    | 53.19 | 57.37 | 226.58 | 492.17 | 155.48 | 104.23 | 75.80     | 88,014               |
| MEAN      | 74.68   | 66.28    | 57.18    | 52.16   | 48.76    | 49.63 | 56.09 | 279.48 | 625.76 | 205.89 | 114.66 | 84.90     | 103,573              |
| STD. DEV. | 4.47    | 2.42     | 2.54     | 2.10    | 3.30     | 2.59  | 2.65  | 45.75  | 142.24 | 53.58  | 15.60  | 12.05     | 15,861               |
| # RECORDS | 3       | 3        | 3        | 3       | 3        | 3     | 3     | 3      | 3      | 3      | 3      | 3         | 3                    |
| MINIMUM   | 70.94   | 63.20    | 53.94    | 49.35   | 44.11    | 47.13 | 52.40 | 226.58 | 492.17 | 155.48 | 103.03 | 75.80     | 88,014               |
| MAXIMUM   | 80.97   | 69.10    | 60.13    | 54.39   | 51.45    | 53.19 | 58.50 | 338.19 | 822.80 | 280.10 | 136.71 | 101.93    | 125,345              |

### TABLE 3 LITTLE BIGHORN RIVER AT STATE LINE NEAR WYOLA, WYOMING Station No. 062890.00 Average Mouthly Flows (afr)

Average Monthly Flows (cfs)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <br>YEAR | OCTOBER         | NOVEMBER | DECEMBER        | JANUARY        | FEBRUARY       | MARCH | APRIL. | MAY    | IUNE    | шпу              | AUGUST | SEPTEMBER      | ANNUAL<br>TOTAL (AID |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|----------|-----------------|----------------|----------------|-------|--------|--------|---------|------------------|--------|----------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                 |          |                 |                |                |       |        |        |         |                  |        |                | 101001011            |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1939     |                 |          |                 |                |                |       | 84.03  | 372.48 | 332.60  | 166.29           | 110.87 | 89.43          | *****                |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1940     | 80.48           | 70.30    | 65.13           | 60.39          | 62.24          | 61.16 | 68.30  | 238.61 | 317.23  | 142.58           | 91.23  | 82.80          | 81 107               |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1941     | 77.55           | 60.83    | 58.65           | 59.87          | 53.07          | 52.00 | 69.20  | 319.97 | 289.47  | 135.39           | 99.55  | 109.97         | 83,827               |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1942     | 118.13          | 104.20   | 84.84           | 79.74          | 69.61          | 66.16 | 148.00 | 458.65 | 562.57  | 216.90           | 120.97 | 97.47          | 128,576              |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1943     | 84.55           | 81.93    | 70.84           | 60.26          | 61.21          | 59.06 | 131.80 | 257.68 | 651.53  | 282.71           | 138.65 | 105.30         | 119,797              |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1944     | 91.10           | 80.90    | 69.39           | 65.19          | 61.90          | 61.35 | 75.23  | 452.16 | 867.73  | 297.03           | 155.13 | 116.50         | 144,676              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1945     | 103.55          | 87.93    | 81.81           | 74.26          | 67.32          | 75.48 | 72.53  | 276.26 | 525.80  | 307.48           | 157.13 | 121.27         | 117,951              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1940     | 102.97          | 93.20    | 81.00           | 84.87          | 88.00          | 86.42 | 172.23 | 332.42 | 478.70  | 222.48           | 134.94 | 120.07         | 120,577              |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1048     | 115.16          | 90.03    | 28.04           | 19.19          | /3.18          | 65.12 | 91.10  | 419.45 | 595.40  | 278.26           | 164.19 | 135.63         | 132,030              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1949     | 84 58           | 68.20    | 59.61           | 01.01<br>57.35 | 09.00<br>64.07 | 53.13 | 80.90  | 361.35 | 358.30  | 185.32           | 117.16 | 104.63         | 102,255              |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1950     | 74.35           | 66.13    | 58.29           | 48 94          | 61.07          | 56.61 | 12.00  | 327.43 | 203.37  | 101.43           | 98.01  | 84.50          | 93,242               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1951     | 76.55           | 70.07    | 62 71           | 60.90          | 50.14          | 54.13 | 66 37  | 202.10 | 367.11  | 100.34           | 90.32  | 81.00          | 78,348               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1952     | 84.55           | 74.57    | 65.48           | 62.19          | 58 34          | 55 97 | 129.80 | 421 07 | 307.47  | 160.07           | 132.84 | 93.30          | 94,938               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1953     | 70.26           | 58.87    | 61.35           | 60.35          | 54 46          | 59.23 | 60 13  | 126.55 | 610 10  | 170.25           | 100.90 | 80.90          | 90,477               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1954     | 71.87           | 64.70    | 62.39           | 54.84          | 54.11          | 53.97 | 69.80  | 315.90 | 376 53  | 179.45           | 88.68  | 82.43<br>74.47 | 92,500               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1955     | 69.77           | 60.83    | 54.90           | 50.55          | 56.36          | 53.87 | 69.67  | 326.10 | 491.17  | 202.74           | 105 71 | 80.70          | 98,029               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1956     | 72.87           | 61.13    | 57.97           | 54.00          | 53.48          | 54.52 | 61.03  | 298.81 | 316.83  | 130.45           | 91 11  | 77 03          | 80 408               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1957     | 67.26           | 60.47    | 57.52           | 49.55          | 52.50          | 52.65 | 59.13  | 228.42 | 724.50  | 284.77           | 153.77 | 115.27         | 114 970              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1958     | 99.06           | 83.17    | 71.55           | 61.13          | 55.29          | 58.19 | 63.53  | 382.35 | 250.50  | 139.06           | 97.29  | 79 40          | 87 302               |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1959     | 70.23           | 66.00    | 60.65           | 56.48          | 57.89          | 57.23 | 65.90  | 182.06 | 686.70  | 218.55           | 118.13 | 89.57          | 104,191              |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1960     | 82.39           | 69.50    | 64.45           | 57.16          | 51.76          | 54.71 | 71.47  | 185.90 | 265.90  | 118.42           | 86.68  | 69.43          | 71,269               |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1961     | 63.97           | 57.20    | 52.29           | 50.45          | 52.32          | 48.65 | 50.73  | 211.71 | 256.30  | 101.32           | 69.84  | 67.90          | 65,404               |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1962     | 04.48<br>72.06  | 58.93    | 51.68           | 48.29          | 50.39          | 53.03 | 118.80 | 331.03 | 401.73  | 192.94           | 114.61 | 86.13          | 95,043               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1903     | 12.00           | 08.00    | 30.52           | 43.65          | 60.50          | 57.13 | 69.70  | 406.55 | 787.77  | 242.06           | 128.45 | 99.20          | 126,216              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1964     | 83.32<br>107.74 | /3.30    | 63.26           | 66.16          | 65.59          | 66.52 | 81.10  | 429.06 | 960.83  | 404.97           | 170.97 | 129.47         | 157,071              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1905     | 107.74          | 91.77    | 83.03           | 14.14          | 66.75          | 61.42 | 85.90  | 313.55 | 926.83  | 337.39           | 149.23 | 122.40         | 146,178              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1900     | 108.00          | 92.07    | 10.81           | 04.81          | 65.86          | 66.45 | 74.73  | 329.52 | 210.60  | 121.10           | 90.42  | 78.33          | 83,513               |
| 1960       103.01       91.03       78.05       71.38       74.17       74.13       81.73       251.74       925.77       312.03       170.32       129.87       142,721         1969       108.13       95.17       83.00       69.45       70.21       70.77       127.30       428.35       405.27       255.97       134.45       106.07       118.284         1970       93.68       85.23       79.42       70.00       68.61       67.58       757       440.29       1017.30       354.74       162.71       129.53       159.614         1971       105.55       89.20       78.65       73.61       70.93       69.74       81.80       338.68       663.97       215.58       125.87       104.40       121.97         1972       95.10       84.17       71.87       67.00       70.90       80.61       88.83       275.03       575.17       200.74       131.90       102.67       111.415         1973       90.19       79.77       69.97       66.52       69.89       69.13       71.83       485.00       693.40       242.84       147.90       119.63       133.319         1974       98.87       89.17       83.26       75.06                                                                                                                                                                                                                                                                                                                      | 1968     | 103.87          | 01.10    | 01.19           | 01.42          | 39.34          | 28.68 | 67.60  | 284.55 | 883.37  | 315.42           | 153.94 | 128.33         | 133,176              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1060     | 109.07          | 91.03    | 10.00           | 11.38          | 79.17          | 74.13 | 81.73  | 251.74 | 925.77  | 312.03           | 170.32 | 129.87         | 142,721              |
| 1770         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760         1760 <th< td=""><td>1909</td><td>03.68</td><td>95.17</td><td>83.(K)<br/>70.43</td><td>09.43</td><td>/0.21</td><td>10.11</td><td>127.30</td><td>428.35</td><td>405.27</td><td>255.97</td><td>134.45</td><td>106.07</td><td>118,284</td></th<> | 1909     | 03.68           | 95.17    | 83.(K)<br>70.43 | 09.43          | /0.21          | 10.11 | 127.30 | 428.35 | 405.27  | 255.97           | 134.45 | 106.07         | 118,284              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1071     | 105.55          | 80.20    | 17.46           | 70.00          | 08.01          | 07.38 | 12.21  | 440.29 | 1017.30 | 354.74           | 162.71 | 129.53         | 159,614              |
| 1972       92.10       64.11       71.87       67.00       70.90       80.01       88.83       275.03       575.17       200.74       131.90       102.67       111.415         1973       90.19       79.77       69.97       66.52       69.89       69.13       71.83       485.00       693.40       242.84       147.90       119.63       133.319         1974       98.87       89.17       83.26       75.06       69.18       68.52       127.43       379.87       667.80       252.94       143.00       109.40       130,709         1975       98.29       89.70       81.26       67.26       62.82       67.19       76.40       289.55       1125.33       689.29       228.26       151.33       182.871         1976       120.06       98.57       91.23       74.00       74.66       73.00       84.57       333.97       567.80       261.39       149.32       110.43       123.370         1977       95.48       81.53       78.42       69.42       73.00       69.39       130.43       533.35       401.57       174.90       116.19       91.20       115.912                                                                                                                                                                                                                                                                                                                                                                                  | 1972     | 05.10           | 84.17    | 78.03           | 13.01          | 70.93          | 69.74 | 81.80  | 338.68 | 663.97  | 215.58           | 125.87 | 104.40         | 121,797              |
| 1974         98.87         89.17         83.26         75.06         69.18         68.52         127.43         379.87         667.80         252.94         143.00         199.63         133.319           1974         98.87         89.17         83.26         75.06         69.18         68.52         127.43         379.87         667.80         252.94         143.00         109.40         130,709           1975         98.29         89.70         81.26         67.26         62.82         67.19         76.40         289.55         1125.33         689.29         228.26         151.33         182.871           1976         120.06         98.57         91.23         74.00         74.66         73.00         84.57         333.97         567.80         261.39         149.32         110.43         123.370           1977         95.48         81.53         78.42         69.42         73.00         69.39         130.43         533.35         401.57         174.90         116.19         91.20         115.912                                                                                                                                                                                                                                                                                                                                                                                                                       | 1973     | 90.19           | 79.77    | 60.07           | 66.52          | 70.90          | 60.01 | 00.03  | 2/3.03 | 5/5.17  | 200.74           | 131.90 | 102.67         | 111,415              |
| 1975 98.29 89.70 81.26 67.26 62.82 67.19 76.40 289.55 1125.33 689.29 228.26 151.33 182.871<br>1976 120.06 98.57 91.23 74.00 74.66 73.00 84.57 333.97 567.80 261.39 149.32 110.43 123.370<br>1977 95.48 81.53 78.42 69.42 73.00 69.39 130.43 533.35 401.57 174.90 116.19 91.20 115.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1974     | 98.87           | 89.17    | 83.26           | 75.06          | 60.19          | 68.53 | 11.03  | 463.00 | 093.40  | 242.84           | 147.90 | 119.63         | 133,319              |
| 1976 120.06 98.57 91.23 74.00 74.66 73.00 84.57 333.97 567.80 261.39 149.32 110.43 123.370<br>1977 95.48 81.53 78.42 69.42 73.00 69.39 130.43 533.35 401.57 174.90 116.19 91.20 115.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1975     | 98.29           | 89.70    | 81.26           | 67.26          | 62.82          | 67.19 | 76.40  | 3/9.0/ | 1125 13 | 232.94<br>680.20 | 143.00 | 109.40         | 130,709              |
| 1977 95.48 81.53 78.42 69.42 73.00 69.39 130.43 533.35 401.57 174.90 116.19 91.20 115.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1976     | 120 06          | 98.57    | 91.23           | 74.00          | 74.66          | 73.00 | 84.57  | 333.97 | 567.80  | 261 39           | 149 32 | 131.33         | 102,071              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1977     | 95.48           | 81.53    | 78.42           | 69.42          | 73.00          | 69.39 | 130.43 | 533.35 | 401.57  | 174.90           | 116.19 | 91.20          | 115,912              |

## TABLE 3 (continued) LITTLE BIGHORN RIVER AT STATE LINE NEAR WYOLA, WYOMING Station No. 062890.00 Average Monthly Flows (cfs)

| YEAR       | OCTOBER | NOVEMBER | DECEMBER | JANUARY  | FEBRUARY | MARCH      | APRIL  | MAY    | JUNE    | JULY                          | AUGUST                                 | SEPTEMBER | ANNUAL<br>TOTAL (AF) |
|------------|---------|----------|----------|----------|----------|------------|--------|--------|---------|-------------------------------|----------------------------------------|-----------|----------------------|
|            |         | *****    |          | <u>.</u> |          |            |        |        |         | ······ بلايت بنه يتدري ملدينه |                                        |           |                      |
| 1978       | 85.23   | 76.13    | 67.00    | 65.81    | 70.50    | 67.52      | 85.17  | 487.61 | 1066.80 | 425.97                        | 189.94                                 | 139.77    | 170,722              |
| 1979       | 114.16  | 94.53    | 79.81    | 73.23    | 72.54    | 73.97      | 81.07  | 267.87 | 339.37  | 152.32                        | 107.29                                 | 89.30     | 93,397               |
| 1980       | 78.00   | 71.13    | 71.77    | 59.23    | 59.97    | 57.68      | 87.47  | 277.42 | 266.50  | 137.23                        | 98.77                                  | 86.03     | 81 831               |
| 1981       | 79.52   | 73.47    | 67.52    | 63.90    | 60.71    | 59.52      | 88.20  | 341.97 | 371.20  | 173.61                        | 108.39                                 | 91.30     | 95,509               |
| 1982       | 79.65   | 70 80    | 65 19    | 60.65    | 55 29    | 56.61      | 62 97  | 168.65 | 477 07  | 283.45                        | 128 45                                 | 100.13    | 97 190               |
| 1983       | 95.74   | 80.70    | 73.71    | 69.94    | 60.93    | 59.65      | 71.40  | 216 61 | 593.10  | 226 03                        | 126 03                                 | 96 70     | 106 835              |
| 1984       | 86.68   | 73.00    | 54.97    | 66.65    | 61.76    | 62 19      | 77 53  | 488.00 | 746 20  | 200 32                        | 140 48                                 | 106 57    | 136,000              |
| 1985       | 01.10   | 11 63    | 69.42    | 67 74    | 61.18    | 65 58      | 86.57  | 240.07 | 160.40  | 102.65                        | 78.00                                  | 70.77     | 72 360               |
| 1986       | 69 19   | 55.27    | 58.13    | 55.00    | 51.07    | 56.06      | 00.77  | 297.57 | 500.00  | 170.32                        | 101.16                                 | 85.90     | 101 180              |
| 1087       | 76.55   | 65 50    | 60.97    | 60.26    | 55.93    | 54.36      | 121.40 | 201.22 | 204.02  | 119.43                        | 96 77                                  | 75 47     | 77,000               |
| 1088       | 66 32   | 61.57    | 56.00    | 52 71    | 51.66    | 5171       | 72.90  | 405 20 | 200.03  | 110.44                        | <b>6</b> <i>J</i> . <i>11</i><br>90.10 | 13.41     | 02 017               |
| 1080       | 68 19   | 61.17    | 56.42    | 54 30    | 49.21    | 52.84      | 71.60  | 220 13 | 100.07  | 125.55                        | 86.06                                  | 75.65     | 68 076               |
|            |         |          |          |          | 77.41    | 33.04      | /1.43  | 227.13 | 177.77  | 123.74                        | 00.00                                  | 10.15     | 00,070               |
| MEAN       | 87.61   | 76.38    | 68 63    | 63 23    | 62 33    | 62 14      | 85 78  | 324 88 | 529.92  | 223 69                        | 123.66                                 | 98 94     | 107 343              |
| STD DEV    | 15 58   | 12.01    | 10.28    | 8 01     | 8 2.4    | 8 16       | 25.22  | 07.24  | 248.07  | 101.56                        | 31.50                                  | 20.59     | 21 021               |
| # RECORDS  | 50      | 50       | 50       | 50       | 50       | a.io<br>50 | 51     | 57.24  | 240.07  | 101.50                        | 21.37                                  | 20.58     | 51,021               |
| MINIMUM    | 63 97   | 55 27    | 51.68    | 43.65    | 49.21    | 48.65      | 50 73  | 126 55 | 169 40  | 101 32                        | 69 84                                  | 67 90     | 65 404               |
| MAVINALINA | 120.06  | 104.20   | 01.00    | 94.07    | 47.21    | -0.UJ      | 30.73  | 120.33 | 107.40  | 101.32                        | 07.04                                  | 161.22    | 100,404              |
| MAAIMUM    | 120.00  | 104.20   | 91.23    | 84.87    | 85.00    | 50.4Z      | 112.23 | 222.22 | 1123.33 | 089.29                        | 228.20                                 | 121.33    | 182,8/1              |

11

### IV HYDROLOGY

There are streamflow records for three years at the Parkman gage which represent the flows at the downstream end of the proposed instream flow segment. This period is not long enough to support conclusions about the availability of unappropriated streamflow to support the instream flow request. To estimate long term streamflow for the Parkman station regression analysis of records at Parkman with concurrent records at the State Line gage was used. Data (recorded or generated) for the Parkman gage include the effects of existing diversions above and within the proposed instream flow segment.

### IV.1 Methodology:

Methods considered for estimating long-term flow at the Parkman gaging station (downstream end of Instream Flow Segment No. 1) include procedures recommended in the U.S. Bureau of Reclamation Hydrology Manual (1951) or the Lowham method (1988). These procedures include the following:

- 1. Regional-area elevation relationships (such as Lowham's);
- 2. Yield per square mile;
- 3. Regression of concurrent records at nearby station;
- 4. Regional altitude-runoff relationship; and
- 5. Regression with precipitation data and/or snow course data.

As recommended by the Bureau, the best procedure is regression analysis of concurrent records. When regressing streamflow data to estimate monthly flows, it is customary to regress data for each month. Another procedure is to regress the annual data and distribute the annual flow by percentages. A combination of these procedures is used herein. As shown in Table 2, there are only three (3) years of data from which to develop the regression equations. Statistically, this number of data points is not enough, but the results are better than would be obtained by the other methods.

For each month during the year the mean monthly flows recorded at the two stations were correlated using linear regression procedures. The State Line station was the independent variable and the Parkman station the dependent variable. Results of these linear regressions are presented below:

> Y = Mean Monthly Flow at Parkman (second-foot-days) X = Mean Monthly Flow at State Line (second-foot-days)

| <u>R<sup>2</sup></u> | Equation                                                                                                                                                                                     |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.95                 | Y = 0.83(X) - 195                                                                                                                                                                            |
| 0.48                 | N/A                                                                                                                                                                                          |
| 0.74                 | Y = 0.64(X) + 241                                                                                                                                                                            |
| 0.94                 | Y = 0.75(X) - 17                                                                                                                                                                             |
| 0.09                 | N/A                                                                                                                                                                                          |
| 0.86                 | Y = 0.42(X) + 593                                                                                                                                                                            |
| 0.55                 | N/A                                                                                                                                                                                          |
| 1.00                 | Y = 0.67(X) + 1,349                                                                                                                                                                          |
| 1.00                 | Y = 0.74(X) + 1,967                                                                                                                                                                          |
| 0.99                 | Y = 0.77(X) + 270                                                                                                                                                                            |
| 0.99                 | Y = 0.96(X) - 616                                                                                                                                                                            |
| 1.00                 | Y = 0.98(X) - 757                                                                                                                                                                            |
|                      | R <sup>2</sup> 0.95         0.48         0.74         0.94         0.09         0.86         0.55         1.00         1.00         0.99         0.99         0.99         0.99         0.90 |

As can be seen, the coefficients of determination,  $R^2$ , indicate a good correlation

between the records at the two stations except for the months of November, February, and

April. Because of the poor coefficient of determination for these months, an alternative

regression analysis was used to generate flows for them.

<u>November</u>: Using the regression equation for the month of October alone and the October and November flows, November was solved by subtracting synthetic October flows from the estimated October-November flows.

<u>April:</u> Using regression equations for the months of May and June and the combination of April through June flows, April was solved for by subtracting the synthetic May and June flows from the estimated April through June flows.

**February:** Flows for February were calculated based on the average percent of annual total flows exhibited for February flows at the Parkman gage for the period of actual record. This average percentage was then applied to the annual totals generated by regressing annual flows at the Parkman station versus the State Line Station.

The linear regression equations developed for this procedure are:

| Period               | $\underline{R^2}$ | Equation                 |
|----------------------|-------------------|--------------------------|
| October and November | 0.99              | Y = 0.87(X) - 616        |
| April, May, and June | 1.00              | Y = 0.73(X) + 2,917      |
| Annual               | 1.00              | $Y = 0.765 \times 1,699$ |
| February             | NA                | Y = 0.0271 (Annual)      |

### Where:

Y = Mean Period Flow at Parkman (second-foot-days)

X = Mean Period Flow at State Line (second-foot-days)

In addition to the development of long-term monthly flows for the proposed instream

flow segment, it was also necessary to develop flows for portions of the month of November, November 1-15, and November 16-30, because the WGFD requested different flow amounts for these two periods. This was accomplished by examining the three years of November data available for the Parkman gage. During these three years 51.8% of the total November flow occurred during the first half of the month and 48.2% during the latter period. The standard deviations in both cases were 0.03%, indicating that this proportionment is relatively constant.

Using the above equations and procedures, the estimated flows at the downstream end of the proposed instream flow segment were computed from the recorded flows of the Little Bighorn River at State Line gaging station. These flow estimates are presented in Table 4.

The means were calculated for all years in which flow records were available at the State Line gaging station (1939 - 1989). Along with the mean are the standard deviation, number of records, minimum and maximum monthly flow, and the flow requested by the WGFD.

### IV. 2 Future Scenarios:

Currently the status of future development on the Little Bighorn River is being debated in Congress. The U.S. Forest Service (USFS) has recommended a Wild and Scenic Designation for the river above the forest boundary and extending upstream of Instream Flow Segment No. 1. The study entitled "Wild & Scenic Study Report and Final Environmental Impact Statement on the Little Bighorn River" (EIS) of June 1989 presents an evaluation of three alternatives for future management of the Little Bighorn River. The three alternatives presented are:

# TABLE 4LITTLE BIGHORN RIVER: GENERATED FLOWS ATDOWNSTREAM END OF INSTREAM FLOW SEGMENT NO. 1

Average Monthly Flows (cfs)

| YEAR   | OCTOBER        | NOVEMBER              | NOY. 1-15 | NOV 16-30      | DECEMBER       | JANUARY | FEBRUARY       | MARCH | APRIL        | MAY    | JUNE   | JULY            | AUGUST | SEPTEMBER      | ANNUAL<br>TOTAL (40 |
|--------|----------------|-----------------------|-----------|----------------|----------------|---------|----------------|-------|--------------|--------|--------|-----------------|--------|----------------|---------------------|
| 10.40  | (0.12          | <b>6</b> • • •        |           | 10.41          |                |         |                |       |              |        |        |                 |        |                |                     |
| 1940   | 57.71          | 31.49<br>43.06        | 23.30     | 49.61          | 49.76          | 44.79   | 30.83          | 44.81 | 45.96        | 203.78 | 301.83 | 118.09          | 67.68  | 56.04          | 65,086              |
| 10.12  | 91.20          | 40.00                 | 44.03     | 41.49          | 43.38          | 44.40   | 32.95          | 40.97 | 51.91        | 258.42 | 281.15 | 112.57          | 75.67  | 82.71          | 68,196              |
| 1943   | 63.49          | 61.86                 | 61.11     | 50.01          | 02.40<br>52.44 | 39.32   | 49.00          | 46.91 | 113.51       | 351.56 | 484.56 | 175.11          | 96.23  | 70.44          | 101,758             |
| 1944   | 68.95          | 61.30                 | 63.52     | 50.06          | 53.44          | 44.09   | 40.38          | 43.93 | 88.31        | 216.58 | 550.82 | 225.60          | 113.20 | 78.13          | 95,725              |
| 1945   | 79.17          | 68.07                 | 70.55     | 65 59          | 60.51          | 40.40   | 33.73          | 44.89 | 22.30        | 347.20 | 711.85 | 236.59          | 129.02 | 89.12          | 114,728             |
| 1946   | 78.69          | 72.64                 | 75.29     | 70.00          | 60.03          | 63.17   | 45.67          | 55 42 | 48.11        | 229.00 | 437.17 | 244.01          | 130.94 | 93.80          | 94,520              |
| 1947   | 81.16          | 70.55                 | 73.12     | 67.98          | 59.91          | 58.91   | 50.95          | 48 47 | 60.15        | 200.78 | 500.01 | 179.39          | 109.04 | 92.02          | 94,972              |
| 1948   | 88.75          | 74.83                 | 77.56     | 72.11          | 58,10          | 45.71   | 38.45          | 42.28 | 66.24        | 286.21 | 332 42 | 150.88          | 137.72 | 107.90         | 103,230             |
| 1949   | 63.52          | 49.86                 | 51.67     | 48.04          | 46.20          | 42.52   | 36.46          | 47 64 | 62.86        | 263.44 | 351.09 | 132 57          | 74.77  | 5771           | 82,00J<br>74 204    |
| 1950   | 55.08          | 47.53                 | 49.26     | 45.80          | 45.35          | 36.20   | 30.90          | 42.90 | 40.98        | 129.68 | 354.36 | 137.84          | 72.58  | 54.86          | 63 284              |
| 1951   | 56.89          | 51.08                 | 52.94     | 49.22          | 48.20          | 45.18   | 37.10          | 41.86 | 47.64        | 247.09 | 339.24 | 185.83          | 107.63 | 66.35          | 77 119              |
| 1952   | 63.49          | 55.42                 | 57.44     | 53.40          | 49.99          | 46.15   | 37.09          | 42.63 | 101.69       | 326.92 | 306.92 | 131.63          | 82.73  | 54.17          | 78 687              |
| 1953   | 51.70          | 40.97                 | 42.46     | 39.48          | 47.33          | 44.77   | 36.21          | 44.00 | 28.68        | 128.51 | 526.66 | 146.38          | 80.78  | 55.68          | 74,223              |
| 1934   | 53.03          | 40.13                 | 47.83     | 44.47          | 47.99          | 40.63   | 34.59          | 41.79 | <b>50.77</b> | 255.69 | 346.00 | 140.54          | 65.24  | 47.86          | 70,778              |
| 1955   | 51.30          | 42.07                 | 44.22     | 41.11          | 43.17          | 37.41   | 38.25          | 41.75 | 49.53        | 262.53 | 431.38 | 164.25          | 81.59  | 53.98          | 78,425              |
| 1950   | 40.22          | 40.09                 | 44.00     | 41.52          | 45.14          | 40.00   | 30.61          | 42.02 | 44.27        | 244.20 | 301.53 | 108.78          | 67.59  | 50.38          | 64,889              |
| 1958   | 75 47          | 42.22                 | 43.70     | 40.08          | 44.85          | 30.00   | 44.57          | 41.24 | 32.43        | 196.93 | 605.17 | 227.19          | 127.72 | 87.91          | 92,663              |
| 1959   | 51.67          | 47.21                 | 48.01     | 45.49          | 33.90          | 43.33   | 34.24          | 43.37 | 52.10        | 300.32 | 252.13 | 115.39          | 73.50  | 52.70          | 70,431              |
| 1960   | 61.71          | 50.88                 | 52 73     | 49.03          | 40.37          | 41.00   |                | 43.10 | 33.18        | 103.80 | 377.01 | 1/0.3/          | 93.51  | 62.68          | 83,294              |
| 1961   | 46.51          | 39.20                 | 40.62     | 37.77          | 41 48          | 37 33   | 26.07          | 30 56 | 43.91        | 100.37 | 203.00 | 99.33           | 03.32  | 42.92          | 57,956              |
| 1962   | 46.93          | 40.74                 | 42.22     | 39.26          | 41.09          | 35.71   | 37 13          | 41 40 | 87.03        | 103.71 | 250.45 | 60.43<br>166 73 | 47.13  | 41.41          | 53,207              |
| 1963   | 53.19          | 49.05                 | 50.83     | 47.26          | 44.21          | 32.22   | 48 77          | 43 12 | 49.87        | 316 57 | 652.20 | 104.42          | 90.13  | 29.31<br>72.14 | 10,378              |
| 1964   | 64.29          | 56.29                 | 58.34     | 54.24          | 48.55          | 49.13   | 58.22          | 47.06 | 56.84        | 331.69 | 781 19 | 319 40          | 144 23 | 101.85         | 124 370             |
| 1965   | 82.63          | 71.63                 | 74.24     | 69.02          | 62.98          | 55.57   | 56.23          | 44.92 | 53.95        | 254.11 | 755.87 | 267.55          | 123 36 | 94.91          | 116.013             |
| 1966   | 82.84          | 72.43                 | 75.07     | 69.80          | 57.29          | 48.11   | 32.83          | 47.03 | 57.72        | 264.83 | 222.41 | 101.61          | 66.91  | 51.65          | 66 987              |
| 1967   | 54.04          | 43.24                 | 44.82     | 41.67          | 47.22          | 45.57   | 51.37          | 43.77 | 39.53        | 234.63 | 723.49 | 250.70          | 127.88 | 100.74         | 106,248             |
| 1968   | 79.43          | 71.32                 | 73.92     | 68.72          | 58.49          | 53.19   | 53.04          | 50.26 | 47.23        | 212.59 | 755.07 | 248.10          | 143.61 | 102.24         | 113,118             |
| 1969   | 82.95          | 74.62                 | 77.34     | 71.91          | 61.28          | 51.60   | 45.81          | 48.85 | 99.00        | 331.21 | 367.40 | 205.08          | 109.18 | 78.88          | 94,164              |
| T 1970 | 12.13          | 63.20                 | 64 54     | 60.93          | 57.48          | 52.74   | 50.71          | 48.58 | 52.40        | 338.19 | 822.80 | 280.10          | 136.71 | 101.93         | 125.343             |
| + 1072 | 80.97<br>70.04 | 09.10<br>66.57        | /1.0/     | 66.53          | 60.13          | 54.39   | 44.11          | 47.13 | 58.50        | 273.68 | 562 30 | 182.10          | 103.03 | 76.97          | 97,359              |
|        | 4915           | • C.C.DD - 20.2.2 *** | 00.93     | 1998090 01.13  | SP 20 33.94 () |         |                | 23:18 | 57.37        | 226.58 | 492.17 | 155.48          | 104.23 | 75.80          | 88,013              |
| 1973   | 75 31          | 68.01                 | 71.42     | 58.00<br>66.10 | 52.88          | 49.39   | 21.43          | 48.16 | 57.52        | 369.26 | 582.00 | 195.01          | 122.09 | 92.20          | 105,624             |
| 1975   | 74.83          | 69.35                 | 21.87     | 66.80          | 40.43          | 10.01   | 20.43<br>60.03 | 47.90 | 92.18        | 298.03 | 562.93 | 202.76          | 117.38 | 82.15          | 103,606             |
| 1976   | 92.80          | 78.20                 | 81.05     | 7535           | 66.58          | 55.01   | 46.07          | 47.33 | 42.33        | 237.99 | 9U3.71 | 237.35          | 199.22 | 123.32         | 145,872             |
| 1977   | 72.51          | 62.07                 | 61.32     | 59.81          | 58.33          | 51.57   | 44.93          | 48.27 | 107.62       | 401 74 | 364.64 | 142.80          | 123.43 | 83.17          | 98,036              |
|        |                |                       | •         | • • • • •      |                |         |                |       | 101.02       | 101.11 | 101.04 | 142.07          | 21.02  | 04.29          | 71,422              |

\* Note: Shading indicates actual recorded flow data

## TABLE 4 (continued)LITTLE BIGHORN RIVER: GENERATED FLOWS ATDOWNSTREAM END OF INSTREAM FLOW SEGMENT NO. 1

Average Monthly Flows (cfs)

|          |         |          |           |           | -        |         |          |              |        |        |        |                   |               |           | ANNUAL        |
|----------|---------|----------|-----------|-----------|----------|---------|----------|--------------|--------|--------|--------|-------------------|---------------|-----------|---------------|
| YEAR     | OCTOBER | NOVEMBER | NOV. 1-15 | NOV 16-30 | DECEMBER | JANUARY | FEBRUARY | MARCII       | APRIL  | MAY    | JUNE   | JULY              | AUGUST        | SEPTEMBER | TOTAL (a)     |
|          |         |          |           |           |          |         |          |              |        |        |        |                   |               |           |               |
| 1978     | 64.05   | 56.83    | 58.89     | 54.76     | 50.97    | 48.86   | 65.39    | 47.48        | 61.68  | 371.01 | 860.11 | 335.52            | 162.43        | 111.96    | 134,952       |
| 1979     | 87.92   | 74.38    | 77.08     | 71.67     | 59.22    | 54.43   | 36.52    | 50.19        | 56.69  | 223.43 | 318.31 | 125.56            | 83.10         | 62.42     | 74,531        |
| 1980     | 58.09   | 52.09    | 53.98     | 50.19     | 54.04    | 43.92   | 31.09    | 43.35        | 63.04  | 229.84 | 264.04 | 113.98            | 74.93         | 59.21     | 65,882        |
| 1981     | 59.34   | 54.20    | 56.18     | 52.23     | 51.30    | 47.43   | 37.31    | 44.12        | 65.83  | 273.19 | 342.02 | 141.90            | 84.16         | 64.38     | 76,527        |
| 1982     | 59.44   | 51.88    | 53.77     | 49.99     | 49.80    | 44.99   | 37.94    | 42.90        | 35.44  | 156.78 | 420.87 | 226.17            | 103.42        | 73.05     | 78,721        |
| 1983     | 72.73   | 61.35    | 63.58     | 59.12     | 55.29    | 51.96   | 41.54    | 44.18        | 42.69  | 189.00 | 507.30 | 182.12            | 101.09        | 69.68     | 85,648        |
| 1984     | 65.25   | 54.16    | 56.13     | 52.19     | 43.21    | 49.49   | 50.98    | 45.25        | 61.10  | 371.88 | 621.33 | 231.44            | 123.60        | 79.37     | 108,676       |
| 1985     | 71:42   | 58.59    | 60.72     | 56.46     | 52.53    | 50.31   | 28.66    | 46.67        | 62.23  | 211.40 | 191.72 | 87.45             | 54.99         | 44.23     | 58,162        |
| 1986     | 50.82   | 37.77    | 39.15     | 36.40     | 45.25    | 40.75   | 39.43    | 42.67        | 60.77  | 234.61 | 512.36 | 139.37            | <i>T</i> 1.22 | 59.08     | 80,836        |
| 1987     | 56.89   | 47.09    | 48.80     | 45.38     | 47.02    | 44.69   | 30.40    | 41.91        | 96.34  | 233.52 | 219.01 | <del>9</del> 9.55 | 62.45         | 48.84     | 62,195        |
| 1988     | 48.45   | 43.13    | 44.70     | 41.56     | 43.88    | 39.03   | 35.45    | 41.68        | 64.16  | 376.24 | 323.38 | 105.02            | 65.73         | 49.20     | 74,866        |
| 1989     | 49.99   | 42.88    | 44.44     | 41.32     | 44.15    | 40 29   | 27.06    | 41.32        | 49.47  | 197.41 | 214.49 | 105.32            | 62.73         | 43.60     | <u>55,633</u> |
|          |         |          |           | 1         |          |         |          |              |        |        |        |                   |               |           |               |
|          |         |          | 60.00     |           | -        |         |          |              |        |        |        |                   |               | ~~~~      |               |
| MEAN     | 66.02   | 57.16    | 59.22     | 55.08     | 52.02    | 46.93   | 42.46    | 45.22        | 60.53  | 261.07 | 463.18 | 181.20            | 99.06         | 12.07     | 87,420        |
| SIDDEV   | 12.80   | 12.06    | 12.49     | 11.02     | 0.04     | 0.70    | 9.90     | 3.44         | 21.72  | 03.60  | 182.42 | /8.40             | 30.38         | 20.30     | 21,237        |
| # RECORD | 50      | 50       | 50        | 50        | 50       | 50      | 50       | 50           | 50     | 50     | 50     | 50                | 50            | 50        | 00            |
| MINIMUM  | 40.31   | 37.77    | 39.15     | 36.40     | 41.09    | 32.22   | 26.07    | 39.56        | 28.68  | 128.51 | 191.72 | 80.43             | 4/.13         | 41.41     | 53,207        |
| MAXIMUM  | 92.80   | 83.03    | 80.03     | 80.01     | 86.00    | 03.17   | 09.93    | <b>33.42</b> | 124.92 | 401.74 | 903.71 | 221.22            | 199.22        | 143.34    | 143,872       |
|          |         |          |           |           | 1        |         |          |              |        |        |        |                   |               |           |               |
| DEOLUSET | 40      |          | 60        | 60        | 6        | 60      | 50       | 60           | 60     | 40     | 60     | 67                | 67            | 67        |               |
| REQUEST  | 00      |          | 1 00      | 1 20      | 1 20     | 50      | 50       | 20           | 00     | 00     | 00     | 02                | 02            | 02        |               |

- 1) (No Action), Unsuitable for Designation;
- 2) Designation of 19.2 miles into the Wild and Scenic Rivers System; and
- 3) Designation of 16.9 miles into the Wild and Scenic Rivers System.

The EIS presents Alternative No. 2 as the preferred alternative however in the draft EIS, Alternative No. 3 was the preferred alternative. Alternative No. 3 would exclude from Wild and Scenic Designation that portion of Dry Creek on which the proposed Dry Fork Reservoir is to be located thus possibly allowing this development to occur. For the purposes of this report, these were the three scenarios evaluated.

### Scenario No. 1: No Designation

If the river is not designated Wild & Scenic, the proposed developments for which water right applications have been filed could be accomplished. All of the proposed developments above the instream flow segment would be higher in priority and the size of the proposed diversions structures and reservoirs are such that these structures could potentially dry-up the river. This, however, is not likely to occur because of limitations on the proposed development that would be set by the USFS.

It is stated in the Environmental Impact Statement for the Wild & Scenic designation that under the "No Designation" Scenario, the U.S. Forest Service would require the proposed developments to maintain instream flows as a condition of use. Assumed instream flow requirements are presented in the EIS (Table IV-1) for Dry Fork Creek below Lick

| <u>Stream</u>     | Hydrologic<br><u>Period</u> | Approximate<br><u>Dates</u> | Average<br>Streamflow<br>(cfs) | Average<br>Minimum<br>Instream<br>Flow Reqm't<br>(cfs) | Percent of<br>Total<br>Normal<br>Flow<br>(cfs) |
|-------------------|-----------------------------|-----------------------------|--------------------------------|--------------------------------------------------------|------------------------------------------------|
| Dry Fork<br>below | Rise                        | 5/11-6/1                    | 89                             | 80                                                     | 90                                             |
| Lick<br>Creek     | Bank Full                   | 6/2-6/7                     | 245                            | 219                                                    | 89                                             |
|                   | Recede                      | 6/8-6/28                    | 164                            | 86                                                     | 52                                             |
|                   | Base Flow                   | 6/29-5/10                   | 30                             | 30                                                     | 100                                            |
| Little<br>BigHorn | Rise                        | 5/25-6/9                    | 94                             | 74                                                     | 79                                             |
| River<br>below    | Bank Full                   | 6/10-6/12                   | 200                            | 158                                                    | 79                                             |
| Dayton<br>Gulch   | Recede                      | 6/13-6/21                   | 118                            | 80                                                     | 68                                             |
|                   | Base Flow                   | 6/22-5/24                   | 11                             | 8                                                      | 73                                             |

Creek, and the Little Bighorn River below Dayton Gulch. This table is presented below:

These instream flow requirements are, however, presently being revised due to an update in the methodology used to determine these requirements. Instream flow requirements that may be required of other projects on the Little Bighorn River have not yet been set.

The above instream flows that might be required by the USFS would be comparable to the flows requested by the WGFD. Thus, while the possibility would exist for significantly lower streamflows throughout the Little Bighorn Instream Flow Segment No. 1 should this scenario come to pass, this is unlikely. The streamflow that would occur will largely be a function of bypass flow levels set by the USFS. These flows would probably be comparable to those requested by the WG&F. A more accurate assessment of the streamflows that would exist under this scenario cannot be developed until these requirements are set by the USFS.

### Scenario No. 2: Designation of all 19.2 miles

If the larger reach of river is designated Wild & Scenic then the proposed, unadjudicated water development projects will not be allowed to be constructed. The streamflows will remain at their current levels to the Forest boundary. For the area between the Forest boundary and the downstream end of Instream Flow Segment No. 1, no proposed development has yet been filed, and thus the Instream Flow water right would have seniority. Streamflows throughout Instream Flow Segment No. 1 would continue as they have in the past.

### Scenario No. 3: Designation of 16.2 miles

This scenario is similar to Scenario No. 2, with the exception that the section of Dry Fork Creek would be excluded from Wild & Scenic designation to permit development of the proposed Dry Fork Reservoir. However, it may be assumed that the USFS in granting a permit would require the bypass of flows much as those presented in Table IV-1 of the EIS. An analysis of the data from Table IV-I to indicate storage potential is presented below:

| Hydrologic<br>Period, |             | Average<br>Streamflow | Assumed<br>USFS<br>Instream Flow<br>Requirements | Averag<br>Flow Avai<br>for Stora | ;e<br>ilable<br>age |
|-----------------------|-------------|-----------------------|--------------------------------------------------|----------------------------------|---------------------|
| Dates (# d            | <u>ays)</u> | <u>(cfs)</u>          | <u>(cfs)</u>                                     | <u>(cfs)</u>                     | <u>(af)</u>         |
| 5/11-6/1              | (22)        | 89                    | 80                                               | 9                                | 392                 |
| 6/2-6/7               | (6)         | 245                   | 219                                              | 26                               | 309                 |
| 6/8-6/28              | (21)        | 164                   | 86                                               | 78                               | 3,243               |
| 6/29-5/10             | (316)       | 30                    | 30                                               | 0                                | 0                   |
|                       |             | Total                 | Available for Sto                                | orage (af/yr)                    | 3,944               |

The average flows available for storage in Dry Fork Creek above Instream Flow Segment No. 1 are the flows remaining after the assumed USFS instream flow requirements are subtracted from the average streamflow. The WG&F instream flow request for the months of May and June is 60 cfs. Average discharges for these months at the downstream end of the Instream Flow Segment No. 1 are 216 and 463 cfs respectively, therefore depletions between 9 and 78 cfs will not reduce flows in the Instream Flow Segment No. 1 below the requested amounts.

### V MEAN MONTHLY FLOW ANALYSIS

The mean of the monthly flows (which are a mean of the daily flow readings for that month) for the downstream end of the instream flow segment from Table 4 (page 16) are presented in the following summary:

| Marsh      | Mean<br>Discharge | Requested<br>Discharge |
|------------|-------------------|------------------------|
| Month      | (CIS)             | (CIS)                  |
| October    | 66                | 60                     |
| November:  | (57)              |                        |
| Nov. 1-15  | 59                | 60                     |
| Nov. 16-30 | 55                | 50                     |
| December   | 52                | 50                     |
| January    | 47                | 50                     |
| February   | 42                | 50                     |
| March      | 45                | 50                     |
| April      | 61                | 60                     |
| May        | 261               | 60                     |
| June       | 463               | 60                     |
| July       | 181               | 62                     |
| August     | 99                | 62                     |
| September  | 72                | 62                     |

Figure 2 graphically compares the mean monthly flows to the requested flows.

As can be seen, the requested flow is not available in the average year during the months of January, February and March and by one cfs for the period November 1-15. For all other months the average flow exceeds the requested flow.

## FIGURE 2: L11 TLE BIGHORN RIVER Avg Monthly & Requested Flow Comparison



23

Mean Flow Requested Flow

### VI DRY YEAR FLOW ANALYSIS

The ability of the Little Bighorn River to meet the requested instream flows was evaluated for dry years using two methods. First, the requested flows are compared to those available in the driest year on record determined by total annual flow. Second, the requested flows are compared to the flow during the average of the lowest three years by period. This second procedure was utilized because the lowest flow during a period may not correspond to the lowest flow by annual total.

The ranking of estimated monthly flow of the Little Bighorn River at the downstream end of the Instream Flow Segment No. 1 in ascending order is presented in Table 5. The table presents the average flows for each instream flow period in cubic-feet per second and annual flows in acre-feet. The driest year on record for the Little Bighorn River is 1961. A comparison of the recorded monthly flows for 1961 versus the flows requested by the WG&F is presented in Table 6. Shortage occurred in all months except May, June, and July. A bar graph comparing 1961 monthly flows to the requested flows is presented on Figure 3.

## TABLE 5 ANKING OF FLOWS IN ASCENDING ORDER Downstream End of Instream Flow Segment No. 1 Little Bighorn River

Average Discharge (cfs)

|         | 00       |               |      | Nov 16    | 1    | April     |       | Int. 1         |              | Total       |
|---------|----------|---------------|------|-----------|------|-----------|-------|----------------|--------------|-------------|
| YEAR    | 100      | Nov 15        | VEAR | to Mar 31 | YEAR | to Jun 31 | YFAR  | to Sep. 30     | YEAR         | Annual (af) |
| prinais |          |               |      |           |      |           |       |                |              |             |
| 19      | 61       | 44.59         | 1961 | 36.51     | 1989 | 154.27    | 1961  | 58.52          | 1961         | 53,207      |
| 19      | 62       | 45,40         | 1989 | 38,79     | 1985 | 155.74    | 1985  | 62.42          | 1989         | 55,633      |
| 19      | 86       | 47.01         | 1962 | 38.92     | 1961 | 158.51    | 1960. | 68.87          | 1960         | 57,956      |
| A       | <br>/e.  | 45.67         | Ave. | 38.07     | Ave. | 156.17    | Ave.  | 63.27          | Ave.         | 55,598      |
| 19      | 88       | 47.23         | 1950 | 39.78     | 1960 | 159.39    | 1987  | 70.51          | 1985         | 58,162      |
| 19      | 57       | 47.44         | 1956 | 39.87     | 1950 | 174.51    | 1989  | 70.84          | 1987         | 62,195      |
| 19      | 89       | 48.18         | 1988 | 40.28     | 1966 | 182.57    | 1988  | 73.58          | 1950         | 63,284      |
| 19      | 53       | 48.69         | 1955 | 40.29     | 1987 | 183.51    | 1966  | 73.63          | 1956         | 64,889      |
| 19      | 55       | 48.99         | 1941 | 41.21     | 1940 | 184.07    | 1956  | 75.86          | 1940         | 03,080      |
| 19      | 59       | 50.78         | 1986 | 41.46     | 1980 | 186.13    | 1958  | 80.83          | 1980         | 00,004      |
| 19      | 56       | 50. <b>85</b> | 1960 | 41.52     | 1956 | 197.19    | 1940  | 80.87          | 1966         | 00,987      |
| 19      | 67       | 51.03         | 1957 | 41.64     | 1941 | 197.83    | 1980  | 82.90          | 1941         | 70 431      |
| 19      | 54       | 51.33         | 1987 | 41.72     | 1979 | 199.74    | 1954  | 34.94          | 1938         | 70,431      |
| 19      | 63       | 52.42         | 1954 | 41.75     | 1958 | 202.60    | 1949  | 88.08          | 1954         | 74 773      |
| 1 19    | 50       | 53.18         | 1963 | 42.51     | 1982 | 203.84    | 1930  | 00.77          | 1933         | 74 204      |
| 19      | 41       | 33.43         | 1953 | 42.83     | 1951 | 211.72    | 1952  | 09.90<br>00.40 | 1070         | 74 531      |
| 19      | 5/<br><1 | 55.60         | 1939 | 43.43     | 1040 | 217.90    | 1070  | 90.40          | 1988         | 74.866      |
| 19      | 21       | 56.75         | 1051 | 43.87     | 1053 | 226.86    | 1086  | 92.25          | 1981         | 76 527      |
| 1 19    | 87       | 57 59         | 1940 | 43.00     | 1981 | 727.52    | 1953  | 94.70          | 1962         | 76.578      |
| 10      | 40       | 57.03         | 1080 | 44.15     | 1048 | 228.03    | 1981  | 97.17          | 1951         | 77.119      |
| 10      | 81       | 58 31         | 1982 | 44.71     | 1962 | 239.51    | 1977  | 99.99          | 1955         | 78,425      |
| 19      | 60       | 58.78         | 1952 | 45.16     | 1945 | 244.61    | 1955  | 100.44         | 1952         | 78,687      |
| 19      | 49       | 59.65         | 1981 | 46.00     | 1983 | 245.70    | 1962  | 102.52         | 1982         | 78,721      |
| 19      | 52       | 61.52         | 1985 | 46.21     | 1952 | 246.07    | 1948  | 107.30         | 1986         | 80,836      |
| 19      | 84       | 62.27         | 1967 | 46.30     | 1955 | 247.97    | 1959  | 111.38         | 1948         | 82,005      |
| 19      | 64       | 62.35         | 1958 | 46.37     | 1988 | 255.93    | 1972  | 112.23         | 1959         | 83,294      |
| 19      | 78       | 62.37         | 1984 | 47.69     | 1959 | 258.30    | 1942  | 114.40         | 1983         | 85,648      |
| 19      | 43       | 63.69         | 1943 | 48.51     | 1972 | 258.35    | 1983  | 118.15         | 1972         | 88,013      |
| 19      | 73       | 66.29         | 1948 | 49.17     | 1969 | 266.59    | 1951  | 120.52         | 1977         | 91,422      |
| 19      | 44       | 67.18         | 1966 | 49.20     | 1986 | 268.87    | 1971  | 121.17         | 1957         | 92,003      |
| 19      | 85       | 67. <b>93</b> | 1983 | 49.59     | 1946 | 271.21    | 1963  | 123.88         | 1969         | 94,164      |
| 19      | 83       | 69.74         | 1944 | 50.81     | 1976 | 271.94    | 1946  | 127.59         | 1945         | 94,520      |
| 19      | 77       | 69.84         | 1964 | 50.96     | 1957 | 277.28    | 1969  | 131.61         | 1940         | 94.972      |
| 19      | 70       | 69.97         | 1973 | 51.28     | 1943 | 284.48    | 1974  | 134.00         | 1943         | 93,723      |
| 19      | 12       | /0.29         | 1977 | 51.90     | 1977 | 294233    | 1982  | 134.00         | 1076         | 08.036      |
| 19      | 58       | 72.38         | 1979 | 52.77     | 1971 | 297.89    | 1973  | 130.91         | 1970         | 100.098     |
| 19      | /3       | /3.80         | 1978 | 53.08     | 1947 | 301.40    | 1970  | 137.22         | 1905         | 101 758     |
| 19      | 14       | /4.04         | 1971 | 53.27     | 1942 | 310.93    | 1943  | 139.04         | 1074         | 103 606     |
| 19      | 45       | 10.30         | 1972 | 33.33     | 1974 | 311.71    | 1964  | 148.26         | 1947         | 105.256     |
| 19      | 40       | 77.50         | 1970 | 13.30     | 1907 | 226.67    | 1044  | 152.26         | 1973         | 105.624     |
| 19      | 08<br>71 | 77.03         | 1909 | 54.60     | 1973 | 336.02    | 1947  | 156.46         | 1967         | 106,248     |
| 19      | 47       | 78 54         | 1074 | 54.00     | 1062 | 220 21    | 1045  | 157.13         | 1984         | 108,676     |
| 19      | -,<br>65 | 79.80         | 1062 | 55 41     | 1084 | 351.66    | 1967  | 160.41         | 1968         | 113,118     |
| 10      | 66       | 80.31         | 1947 | 56.12     | 1965 | 353.54    | 1965  | 162.67         | 1944         | 114,728     |
| 10      | 69       | 81.12         | 1965 | 56 45     | 1944 | 371.21    | 1968  | 165.33         | 19 <b>65</b> | 116,013     |
| 19      | 79       | 84.39         | 1976 | 56.86     | 1964 | 389.27    | 1970  | 173.68         | 1964         | 124,379     |
| 19      | 48       | 85.10         | 1942 | 57.50     | 1975 | 393.03    | 1964  | 189.44         | 1970         | 125,343     |
| 19      | 76       | \$8.96        | 1975 | 57.66     | 1970 | 403.74    | 1978  | 204.30         | 1978         | 134.952     |
| 1 19    | 42       | 89.52         | 1946 | 58.04     | 1978 | 430.28    | 1975  | 288.47         | 1975         | 145,872     |

| Month                           | 1961<br>Mean Monthly<br>Flow<br>(cfs) | Requested<br>Flow<br>(cfs) | Sho <del>rt</del> fall<br>(cfs) | Volume of<br>Shortfall<br>(AF) |
|---------------------------------|---------------------------------------|----------------------------|---------------------------------|--------------------------------|
| Oct.                            | 46.5                                  | 60                         | 13.5                            | 829                            |
| Nov.<br>Nov. 1-15<br>Nov. 16-30 | (39.2)<br>40.6<br>37.8                | 60<br>50                   | 19.4<br>12.2                    | 576<br>362                     |
| Dec.                            | 41.5                                  | 50                         | 8.5                             | 522                            |
| Jan.                            | 37.3                                  | 50                         | 12.7                            | 780                            |
| Feb.                            | 26.1                                  | 50                         | 23.9                            | 1,337                          |
| Mar.                            | 39.6                                  | 50                         | 10.4                            | 638                            |
| Apr.                            | 32.5                                  | 60                         | 27.5                            | 1,634                          |
| May                             | 185.7                                 | 60                         |                                 |                                |
| June                            | 256.5                                 | 60                         |                                 |                                |
| July                            | 86.4                                  | 62                         |                                 | <b></b> .                      |
| Aug.                            | 47.2                                  | 62                         | 14.8                            | 908                            |
| Sept.                           | 41.4                                  | 62                         | 20.6                            | 1,224                          |
|                                 |                                       |                            | TOTAL                           | 8,810                          |
|                                 |                                       |                            | TOTAL (July-Sept.)              | 2,132                          |

# Table 6Comparison of Monthly Flows DuringDriest Year on Record (1961) andRequested Flow

## FIGURE 3: L1. 1'LE BIGHORN RIVER Driest Year & Requested Flow Comparison



Driest Year (1961) Requested Flow

27

Using the average of the three lowest years for each instream flow period helps minimize the influence of data from one extremely dry year which may not be representative of typical low flow years. By period, the three driest years are:

| October - November 15  | 1961, 1962, 1986 |
|------------------------|------------------|
| November 16 - March 30 | 1961, 1989, 1962 |
| April 1 to June 30     | 1989, 1985, 1961 |
| July 1 to September 30 | 1961, 1985, 1960 |

Averaging the monthly flows for the three driest years by period yields the information shown in Table 7. This analysis shows that there are shortfalls for the requested flows for all months except May, June, and July (the same months as for the driest year). Figure 4 is a bar graph relating the three lowest year average, by period, to the requested flow. The shortfall for the 12 months is 6,780 acre-feet versus 8,800 acre-feet for 1961, the driest year on record.

## Table 7

| Period                          | 3-Year<br>Mean Monthly<br>Flow<br>(cfs) | Requested<br>Flow<br>(cfs) | Average<br>Shortfall<br>(cfs) | Average<br>Volume<br>Shortfall<br>(AF) |
|---------------------------------|-----------------------------------------|----------------------------|-------------------------------|----------------------------------------|
| Oct.                            | 48.1                                    | 60                         | 11.9                          | 730                                    |
| Nov.<br>Nov. 1-15<br>Nov. 16-30 | 40.7<br>39.5                            | 60<br>50                   | 19.3<br>10.5                  | 573<br>312                             |
| Dec.                            | 42.2                                    | 50                         | 7.8                           | 479                                    |
| Jan.                            | 37.8                                    | 50                         | 12.2                          | 749                                    |
| Feb.                            | 30.1                                    | 50                         | 19.9                          | 1,113                                  |
| March                           | 40.8                                    | 50                         | 9.2                           | 565                                    |
| April                           | 48.1                                    | 60                         | 11.9                          | 707                                    |
| May                             | 198.2                                   | 60                         |                               |                                        |
| June                            | 220.9                                   | 60                         |                               |                                        |
| July                            | 91.1                                    | 62                         |                               |                                        |
| Aug.                            | 55.2                                    | 62                         | 6.8                           | 417                                    |
| Sept.                           | 42.9                                    | 62                         | 19.1                          | <u>1,135</u>                           |
|                                 |                                         |                            | TOTAL                         | 6,780                                  |

## Comparison of Monthly Flows During the Average of 3 Driest Years by Period and Requested Flows

TOTAL (July-Sept.) 1,552

## FIGURE 4: LITTLE BIGHORN RIVER 3-Driest Yr. Avg. & Request Comparison



ы

### VII RESERVOIR OPERATION STUDY

The Little Bighorn River basin has experienced little water development to date. However, large water development projects involving diversion and storage of water have been proposed and temporary filings made to the State Engineer's Office. The current developments regarding designation of the river as Wild and Scenic may curtail all future development projects.

Because the requested flows for instream flow are not available during dry years, an assessment was made to estimate whether storage above the segment could regulate flow to provide supplemental water during shortages. To assess reservoir feasibility, a balance of flows at the instream flow segment was performed. Two scenarios were examined; first provide additional water to meet the instream flow request for the entire year and second provide water to meet the request only for the period April to September. The WGFD has stated that if natural winter flows are not sufficient to satisfy the requested flow, it is their intent that the request would be only to maintain natural flows. Table 8 presents a summary of annual flow shortages and excesses for the proposed instream flow segment.

A reservoir could physically be constructed on the Little Bighorn River or its tributaries above the proposed instream flow segment. However, before water could be stored in such a reservoir, prior downstream storage rights would have to be filled, or negotiated agreements to store water out of priority would have to be arranged. Because of these institutional constraints to a new storage facility, such a proposal must be studied as part of a much larger planning study.

31

### Table 8

|                                   | Average<br>Year<br>(AF) | Lowest<br>Year, 1961<br>(AF) | Lowest<br>3-Years<br>by Period<br>(AF) |  |
|-----------------------------------|-------------------------|------------------------------|----------------------------------------|--|
| Shortfall for<br>Entire Year      | 988                     | 8,810                        | 6,780                                  |  |
| Shortfall for<br>July - September | 0                       | 2,132                        | 1,552                                  |  |
| Excess Flow                       | 47,155                  | 20,885                       | 19,826                                 |  |

### Summary of Annual Flow Shortages and Excesses Little Bighorn River at Proposed Instream Flow Segment

As can be seen, the amount of storage necessary to satisfy the instream flow request for July through September depends on the criterion used. The flow in the river, if regulated by a reservoir with approximately 2,100 acre-feet of yield, could meet the instream flow request for the July through September period even in the driest year recorded. The July through September request can be supplied during an average year so, on the average no storage is required.

### VIII DAILY FLOW EXCEEDENCE ANALYSIS

The Wyoming Game and Fish Department considers that an instream flow request is "feasible" if during the period of July 1 through September 30 the requested flow is available at least 50% of the time. Therefore, a daily flow duration analysis was conducted and for completeness, the analysis was done for all four instream flow periods. Daily flowduration data were obtained by periods from the Wyoming Water Research Center WRD System for both the State Line and the Parkman gaging stations on the Little Bighorn River. The curves for the Parkman gaging station were then adjusted using procedures detailed by Searcy (1951) to create duration curves for the downstream end of the instream flow segment based on the long term relationships exhibited between the two gages. The duration curves for the end of the instream flow segment are presented in Figures 5 through 8.

The WG&F requested flow, their exceedence criteria and actual exceedence data are summarized below:

Table 9

|                         | Daily Flow Excee<br>Little Bigh     | edence Summary<br>10rn River                 |                                      |
|-------------------------|-------------------------------------|----------------------------------------------|--------------------------------------|
| Period                  | Requested<br>Instream Flow<br>(cfs) | WG&F<br>Exceedence Criteria<br><u>% Time</u> | Exceedence<br>Value<br><u>% Time</u> |
| October 1 - November 15 | 60 cfs                              | N/A                                          | 67%                                  |
| November 15 - March 31  | 50 cfs                              | N/A                                          | 48%                                  |
| April 1 - June 30       | 60 cfs                              | N/A                                          | 84%                                  |
| July 1 - September 30   | 62 cfs                              | 50%                                          | 86%                                  |

This indicates that the flow of 62 cfs during the critical period July to September is available 86% of the time which exceeds the WG&F exceedence criterion of 50%.









### IX CONCLUSIONS

The mean monthly flow analysis indicates that on the average for the Little Bighorn River Instream Flow Segment No. 1, the WG&F instream flow request can be met by direct flow except during the winter months, January through March, and the November 1 to 15 period. During dry years the requested flow is only met during spring runoff, May - June. Dry year shortages could be met if storage were provided, but this is a complex issue in which other users in the basin must be considered and is not required by the exceedence criteria established by the WG&F. Their exceedence criterion of flows equalling or exceeding 62 cfs for 50% of the time during July through September can be met with direct flows.

### REFERENCES

- Lowha, H.W. <u>Streamflows in Wyoming</u>, U.S. Geological Survey, Water Resources Investigagation Report 88-4045.
- Searcy, J.K., Flow Duration Curves, Manual of Hydrology: Part 2. Low Flow Techniques, USGS Water-Supply Paper 1542-A, USGPO, 1959.
- U.S. Bureau of Reclamation Manual, Volume IV, Water Studies, January 1951.
- U.S. Department of Agriculture, Forest Service, <u>Wild and Scenic River Study Report and</u> Final Environmental Impact Statement on the Little Bighorn River, June 1989

## **APPENDIX I**

## WYOMING GAME AND FISH DEPARTMENT REPORT

## AND

## **APPLICATION TO WYOMING STATE ENGINEER**

T F NO. 26 5/339



### WYOMING GAME AND FISH DEPARIMENT

### FISH DIVISION

### ADMINISTRATIVE REPORT

TITLE: Little Bighorn River Instream Flow Report

PROJECT: IF-3088-07-8703

AUTHOR: Gerald F. Vogt, Jr.

DATE: February 1989

### INTRODUCTION

Data were collected during the 1988 field season to conduct instream flow analyses for a segment of the Little Bighorn River located in the Bighorn National Forest. The study was designed to provide results which could be used to determine instream flow needs for trout as well as to evaluate potential flow related impacts of possible future water development activities. This study does not address recommendations for flushing flows for channel maintenance.

### METHODS

### Study Area

The Little Bighorn River is considered a Class 2 stream by the Wyoming Game and Fish Department (WGFD). Stream classifications throughout Wyoming range from Class 1 (highest rating) to Class 5 (lowest rating). Class 2 streams are generally considered important trout fisheries on a statewide basis. Less than 6% of all streams in the state are Class 2 streams.

The Little Bighorn River contains naturally reproducing populations of rainbow trout, brown trout, and mountain whitefish. Brook and cutthroat trout occur incidentally. The stream below the mouth of Dry Fork Creek is primarily managed as a wild fishery for rainbow trout and secondarily for brown trout; therefore no fish are stocked in this section by the WGFD. The entire study reach is located within National Forest land and is accessible to the public. Because this section of the Little Bighorn River supports an important trout fishery and has public access, this segment was identified as a critical reach.

### Data Collection

All of the field data used in this study were collected from a 519 foot long study site located in the southeast quarter of Section 25, Township 58 North, Range 90 West. This site is located approximately 3.5 miles upstream from the

1

T.F. NO. 26 5/339

Wyoming-Montana border (Figure 1). This site contained a combination of pool and riffle habitat for trout that was representative of trout habitat features found throughout this portion of the stream. Results and recommendations were applied to a portion of the stream extending from the north boundary of the SW1/4 SW1/4 of Section 20, Township 58 North, Range 89 West to the mouth of Dry Fork Creek at the east boundary of the NW1/4 NW1/4 of Section 12, Township 57 North, Range 90 West. This is a distance of approximately 4.4 stream miles.

In accordance with the 1986 Instream Flow legislation, the goal of this study was to determine instream flows necessary to maintain or improve the existing trout fishery in the above segment of the Little Bighorn River. The specific objectives of this study were to determine instream flows necessary to 1) maintain or improve physical habitat for rainbow trout spawning and incubation during the spring, 2) maintain or improve physical habitat for brown trout spawning and incubation during the fall, 3) maintain or improve hydraulic characteristics in the winter that are important for survival of trout, fish passage and aquatic insect production and, 4) maintain or improve adult trout production during the late summer months. Three habitat models were used to make these determinations.

### Models

A physical habitat simulation model (PHABSIM) developed by the Instream Flow Service Group of the U.S. Fish and Wildlife Service (Bovee and Milhous 1978) was used to quantify incremental changes in the amount of physical habitat available for rainbow and brown trout spawning and incubation at various discharge rates. The amount of physical habitat available at a given discharge is expressed in terms of weighted usable area (WUA) and reflects the composite suitability of depth, velocity and substrate at a given flow. Depth, velocity and substrate data were collected at eight transects as described in Bovee and Milhous (1978). Dates and discharge rates when data were collected are given in Table 1. The WUA for various life stages of rainbow and brown trout was simulated for flows ranging from 10 to 300 cubic feet per second (cfs) using calibration and modeling techniques outlined in Milhous et al. (1984).

Table 1. Dates and discharges when instream flow data were collected.

| Date     | Discharge (cfs) |
|----------|-----------------|
|          |                 |
| 06-17-88 | 230             |
| 07-16-88 | 111             |
| 09-13-88 | 68              |
|          |                 |

A Habitat Retention method (Nehring 1979, Annear and Conder 1984) was used to identify a maintenance flow. A maintenance flow is defined as a continuous flow that is needed to maintain minimum hydraulic criteria at riffle areas in a stream segment. These criteria are needed to provide passage for all life stages of trout between different habitat types and maintain existing survival rates of trout and aquatic macroinvertebrates.

Data from single transects placed across three riffles within the study area were analyzed with the IFG-1 computer program (Milhous 1978). Flow data were collected



Figure 1. Map of study area on the Little Bighorn River.

during three different flow events (Table 1). The maintenance flow is identified as the discharge at which two of the three criteria in Table 2 are met for all riffles in the study area.

Table 2. Hydraulic criteria used to obtain an instream flow recommendation using the Habitat Retention method.

| Category                                                                                       | Criteria                                    |
|------------------------------------------------------------------------------------------------|---------------------------------------------|
| Average Depth (ft)<br>Average Velocity (ft per sec)<br>Wetted Perimeter (percent) <sup>2</sup> | Top width <sup>1</sup> x 0.01<br>1.00<br>60 |
|                                                                                                |                                             |

1 - At average daily flow

2 - Compared to wetted perimeter at bank full conditions

The Habitat Quality Index (HQI) developed by the Wyoming Game and Fish Department (Binns and Eiserman 1979) was used to estimate potential changes in trout standing crops over a range of late summer flow conditions. This model incorporates seven attributes that address chemical, physical and biological components of trout habitat. Results are expressed in habitat units (HU). One HU is defined as the amount of habitat quality which will support one pound of trout. Analyses obtained from this method apply to the time of year that governs trout production. On the Little Bighorn River, this time period is between July 1 and September 30.

By measuring habitat attributes at various flow events as if associated habitat features were typical of late summer flow conditions, HU estimates can be made for a range of theoretical summer flows. Habitat attributes on the Little Bighorn River were measured on the same dates and flow levels that data were collected for the PHARSIM and Habitat Retention models (Table 1). To better define the potential impact of other late summer flow levels on trout production, some attributes were derived mathematically or obtained from existing gage data. Gage data were obtained from a U.S. Geological Survey gage located on the Little Bighorn River near the Wyoming-Montana border for the period 1939 to 1986. A regression equation was developed to relate the discharges at the U.S.G.S. gage with discharges measured at the study site. This relationship was used to determine the annual stream flow variation and critical period stream flow, two variables of the HQI, at the study site.

Results from the PHABSIM analysis were used to evaluate the relationship between discharge and physical habitat for rainbow trout spawning and incubation. Rainbow trout generally spawn in April and May and their eggs incubate in the stream gravels until late June. Results from this model were applied to the stream for the period between April 1 and June 30.

PHABSIM results were also used to identify stream flows necessary to maintain or improve physical habitat for brown trout. This species normally spawns in October and November and the eggs incubate until late March. Spawning and incubation results were subsequently used to address the relationship between these life stages and discharge from October 1 to March 31. Results from the Habitat Retention model were combined with the results of the PHABSIM model for brown trout to identify a flow from October 1 to March 31 which would meet the dual objectives of maintaining trout survival and passage and aquatic insect survival as well as maintaining brown trout reproductive success.

Results from the HQI model were used to identify the flow needed to maintain existing levels of trout production between July 1 and September 30.

#### RESULTS

An analysis of gage records indicated that existing flow conditions at the study site approximate 60 cfs during the month of April. Results of the PHABSIM analysis indicate that at this discharge, physical habitat for rainbow trout spawning is approximately 80% of the maximum amount available, which occurs at a discharge of 90 cfs (Figure 2). Reductions in existing physical habitat for spawning occur at flows lower than 60 cfs, while flows between 70 and 125 cfs result in relatively large increases in physical habitat for spawning.

Gage records indicate that existing flows during May and June approximate 300 cfs. PHABSIM results indicate that a flow of 300 cfs provides approximately 40% of the maximum amount of physical habitat for incubation, which occurs at a discharge of 20 cfs. Flows between 20 and 300 cfs will therefore maintain or improve the existing physical habitat for rainbow trout incubation. However, flows less than 60 cfs will reduce the existing amount of physical habitat for trout that may still be spawning during May and June. Such reductions would also dewater some rainbow trout eggs that were deposited at this flow level and consequently cause a reduction in spawning success.

To maintain or improve physical habitat available to rainbow trout for both spawning and incubation, an instream flow of 60 cfs is recommended for the period of April 1 to June 30. This discharge will maintain the existing amount of physical habitat for spawning during the period April 1 to April 30. In addition this discharge will improve existing physical habitat for incubation between May 1 and June 30 while also maintaining physical habitat for late spawning fish during these months.



Figure 2. Percent of maximum usable area (MUA) for spawning and incubation life stages of rainbow trout.

PHABSIM results for brown trout spawning and incubation were nearly identical to those for rainbow trout. Results of the PHABSIM analysis indicate that under visting average flow conditions during the month of October (approximately 60 cfs), physical habitat for brown trout spawning is approximately 80% of the maximum amount available, which occurs at a discharge of 90 cfs (Figure 3). Reductions in existing physical habitat for spawning occur at flows lower than 60 cfs, while flows between 70 and 125 cfs result in relatively large increases in physical habitat for spawning.

The hydrologic analysis showed that existing average flows during the brown trout incubation period (November through March) approximate 50 cfs. A discharge of 50 cfs provides about 85% of the maximum usable area for incubation, which occurs at a discharge of 20 cfs. Flows of between 20 and 50 cfs will maintain or improve the existing physical habitat for brown trout incubation. However, flows less than 60 cfs will reduce physical habitat for trout that may still be spawning in early November. In addition, reductions in flows below 50 cfs from late November to March 31 would also dewater some brown trout eggs that were deposited during October and early November and consequently cause a reduction in spawning success.

To maintain or improve physical habitat available to brown trout for spawning, an instream flow of 60 cfs is recommended for the period of October 1 to November 15. A discharge of 50 cfs during the period November 16 to March 31 is the minimum flow that will maintain existing physical habitat for incubation while preventing the dewatering of eggs that were deposited at higher discharges in October and early November.



Figure 3. Percent of maximum usable area (MUA) for spawning and incubation life stages of brown trout.

Results from the Habitat Retention model showed that the hydraulic criteria in Table 2 are met at flows of 8.8, 14.0 and 15.9 cfs for riffles 1, 2, and 3, respectively (Table 3). The maintenance flow derived from this method is defined as the flow at which two of the three hydraulic criteria are met for all riffles in the study site which in this case is 15.9 cfs. Table 3. Simulated hydraulic criteria for three riffles on the Little Bighorn River. Average daily flow = 110 cfs. Bank full discharge = 712.0 cfs.

| Average                                  | Average  | Wetted                                 |           |  |  |  |  |
|------------------------------------------|----------|----------------------------------------|-----------|--|--|--|--|
| Depth                                    | Velocity | Perimeter                              | Discharge |  |  |  |  |
| (ft)                                     | (ft/sec) | (ft)                                   | (cfs)     |  |  |  |  |
|                                          |          |                                        |           |  |  |  |  |
| 2.49                                     | 5.84     | 50.3                                   | 712.0     |  |  |  |  |
| 2.42                                     | 5.49     | 49.5                                   | 636.9     |  |  |  |  |
| 2.23                                     | 4.77     | 48.0                                   | 497.4     |  |  |  |  |
| 2.04                                     | 4.11     | 46.8                                   | 380.7     |  |  |  |  |
| 1.84                                     | 3.49     | 45.5                                   | 284.5     |  |  |  |  |
| 1.34                                     | 2.06     | 40.4                                   | 110.0     |  |  |  |  |
| 1.08                                     | 1.52     | 38.7                                   | 61.9      |  |  |  |  |
| 0.81                                     | 1.00 1   | 34.7                                   | 28.3      |  |  |  |  |
| 0.51                                     | 0.57     | $30.2^{1}$                             | 8.8 2     |  |  |  |  |
| $0.39^{1}$                               | 0.46     | 28.2                                   | 5.4       |  |  |  |  |
| 0.05                                     | 0.40     | 20+2                                   | 5.4       |  |  |  |  |
|                                          |          | ······································ | <u></u>   |  |  |  |  |
|                                          | F        | affle 2                                |           |  |  |  |  |
|                                          |          |                                        |           |  |  |  |  |
|                                          |          |                                        |           |  |  |  |  |
| 1.95                                     | 7.12     | 52.4                                   | 712.0     |  |  |  |  |
| 1.85                                     | 6.63     | 51.8                                   | 619.1     |  |  |  |  |
| 1.71                                     | 5.65     | 48.5                                   | 458.8     |  |  |  |  |
| 1.53                                     | 4.72     | 46.5                                   | 328.8     |  |  |  |  |
| 1.31                                     | 3.87     | 45.2                                   | 226.0     |  |  |  |  |
| 0.96                                     | 2.67     | 42.7                                   | 110.0     |  |  |  |  |
| 0.68 ,                                   | 1.84     | 39.8                                   | 48.8      |  |  |  |  |
| 0.42 1                                   | 1.16     | 33.1 .                                 | 17.1      |  |  |  |  |
| 0.39                                     | 1.07     | 31.5 1                                 | 14.0 2    |  |  |  |  |
| 0.36                                     | 1.00 1   | 30.3                                   | 11.7      |  |  |  |  |
| ••• == · · · · · · · · · · · · · · · · · |          |                                        |           |  |  |  |  |
|                                          |          | •                                      |           |  |  |  |  |
|                                          | F        | Riffle 3                               |           |  |  |  |  |
|                                          | ·····    | ······                                 |           |  |  |  |  |
| 2.80                                     | 5.05     | 53.6                                   | 712.0     |  |  |  |  |
| 2.53                                     | 4.69     | 52.5                                   | 583.1     |  |  |  |  |
| 2.26                                     | 4.14     | 47.8                                   | 416.3     |  |  |  |  |
| 1.85                                     | 3.58     | 45.6                                   | 281 7     |  |  |  |  |
| 1.42                                     | 3.06     | 43.5                                   | 177 1     |  |  |  |  |
| 1.10                                     | 2.66     | 30.8                                   | 110 0     |  |  |  |  |
| 0.93                                     | 2.00     | 34.0                                   | 70 6      |  |  |  |  |
| 0.81                                     | 2.37     | $\frac{37}{32}$ 1                      |           |  |  |  |  |
| 0.37 1                                   | 2.22     | JZ•Z<br>2/ 1                           | 15 0 2    |  |  |  |  |
| 0.57                                     |          | 24•⊥<br>Э Б                            | 12.9      |  |  |  |  |
| 0.12                                     | T.00     | 2.2                                    | 0.0       |  |  |  |  |

Riffle 1

Minimum hydraulic criteria met
 Discharge at which 2 of 3 hydraulic criteria are met

Based on the results of the Habitat Retention method, an instream flow of 15.9 cfs was identified as the flow that would maintain minimum hydraulic criteria at riffles to provide passage for all life stages of trout between different habitat types and maintain existing survival rates of trout and aquatic macroinvertebrates. However, a flow of 15.9 cfs during the fall and winter would result in significant reductions in physical habitat for brown trout spawning. The results of the PHABSIM analysis indicate that physical habitat for brown trout spawning would be reduced to approximately 5 percent of the maximum amount available. As a result, the recommended instream flow for the period October 1 to November 15 is 60 cfs and for the period November 16 to March 31 the recommended flow is 50 cfs. These recommendations will maintain the existing levels of spawning and incubation for brown trout and also meet or exceed the hydraulic criteria used in the Habitat Retention method for providing fish passage, and maintaining survival rates of trout and aquatic macroinvertebrates.

Results from the HQI analyses (Figure 4) indicate that trout HU's in this portion of the Little Bighorn River would be maximized at an average late summer flow of approximately 85 cfs. Under existing conditions, the stream presently supports 248 HUs which is equal to the maximum potential indicated by the HQI model. A flow of 62 cfs is the minimum flow that will maintain the existing number of habitat units. At lower average late summer flows, the model indicates that reductions in the fishery would occur. These reductions would largely be the result of lower velocities, lower critical period flow and higher annual flow variation. Significant increases in stream flow above 85 cfs would result in increasingly rapid reductions in trout HUS, as would small reductions in discharge below 62 cfs (Figure 4).



Figure 4. Number of potential trout habitat units at several late summer flow levels in the Little Bighorn River.

Based on the results from the HQI analysis, an instream flow of 62 cfs is recommended to maintain existing levels of trout production between July 1 and September 30.

### CONCLUSIONS

Based on the analyses and results contained in this report, the instream flow recommendations in Table 4 will maintain or improve the existing fishery of the Little Bighorn River. These recommendations apply to a 4.4 mile segment of the river extending from the north boundary of the SW1/4 SW1/4 of Section 20, Township 58 North, Range 89 West to the mouth of Dry Fork Creek at the east boundary of the NW1/4 NW1/4 of Section 12, Township 57 North, Range 90 West.

Table 4. Summary of instream flow recommendations to maintain the existing trout fishery in the Little Bighorn River.

| Instream Flow        |
|----------------------|
| Recommendation (cfs) |
|                      |
| 60 <sub>1</sub>      |
| $62\frac{1}{2}$      |
| 60 2                 |
| 50 <sup>2</sup>      |
|                      |

 Feasibility determined by availability at the 50% exceedence level during the specified time period

2 - To maintain the existing natural flows up to the specified amount

### REFERENCES

- Annear, T.C. and A.L. Conder. 1984. Relative Bias of Several Fisheries Instream Flow Methods. North American Journal of Fisheries Management. 4: 531-539.
- Bovee, K. and R. Milhous. 1978. Hydraulic simulation in instream flow studies: theory and technique. Instream Flow Information Paper 5, FWS/OBS-78/33, Cooperative Instream Flow Service Group, U.S. Fish and Wildlife Service. Fort Collins, Colorado.
- Binns, N. and F. Eiserman. 1979. Quantification of fluvial trout habitat in Wyoming. Transactions of the American Fisheries Society 108:215-228.
- Milhous, R.T., D.L. Wegner, and T. Waddle. 1984. User's guide to the Physical Habitat Simulation System. Instream Flow Paper 11, FWS/OBS-81/43, U.S. Fish and Wildlife Service, Fort Collins, Colorado.
- Milhous, R.T. 1984. PHABSIM technical notes. Unpublished. U.S. Fish and Wildlife Service, Fort Collins, Colorado.
- Milhous, R.T. 1978. A computer program for the determination of average hydraulic and shape parameters of a stream cross section. Washington State Dept of Ecology, Olympia.
- Nehring, R. 1979. Evaluation of instream flow methods and determination of water quantity needs for streams in the state of Colorado. Colorado Division of Wildlife, Fort Collins.



## STATE OF WYOMING

OFFICE OF THE STATE ENGINEER

APPLICATION FOR PERMIT TO APPROPRIATE SURFACE WATER

| THIS SECTION IS NOT TO BE FILLED IN BY APPLICANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Filing/Priority Date<br>THE STATE OF WYOMING, SS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STATE ENGINEER'S OFFICE )<br>This instrument was received and filed for record on the <u>6th</u> day of <u>March</u> , A.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u>Frank Dullase</u><br>FRANK J. TRELEASE, for State Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Recorded in Book of Ditch Permits. on Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fee Paid \$ Map FiledE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WATER DIVISION NO2 Temp.<br>DISTRICT NO6Filing No26 5/339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PERMIT NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NAME OF FACILITY Little Bighorn River - Instream Flow Segment No. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1. The name(s) and complete mailing address(cs) of the applicant(s) is/are <u>Wyoming Water Development</u><br>Commission, Herschler Building, Cheyenne, WY 82002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ol> <li>Name &amp; address of agent to receive correspondence and notices <u>Francis Petera</u>, <u>Wyoming Game and Fish</u><br/><u>Department</u>, <u>5400 Bishop Blvd.</u>, <u>Cheyenne</u>, <u>WY</u>; <u>Michael Purcell</u>, <u>W.W.D.C.</u> <u>Herschler</u><br/><u>Building</u>, <u>Cheyenne</u>, <u>WY</u></li> <li>(a) The use B'which the water is to be applied is <u>Instream Flow</u></li> <li>(b) If more than one beneficial use of water is applied for, the location and ownership of the point of use must be shown<br/>in item 10 of the application and the details of the facilities used to divert and convey the appropriation must be shown on the<br/>map in sufficient detail to allow the State Engineer to establish the amount of appropriation. In multiple use applications, stock<br/>and domestic purposes are limited to 0.056 cubic feet per second.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4. The source of the proposed appropriation isLittle Bighorn River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| instream flow segment extends from<br>5. The point of diverginal de proposed works is located the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the Little Bighorn for diverginal de literated the confluence of the literated the literated the confluence of the literated the li |
| north boundary line of the SW4SW4 of Sec. 20, T. 58 N., R. 89 W.<br>6. Are any of the lands crossed by the proposed facility owned by the State or Federal Government? If so, describe lands and indi-<br>cate whether State or Federally owned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| The land crossed by this stream segment in Section 20, T. 58 N., R. 89 W. is owned<br>by the State of Wyoming. All other lands crossed by this stream segment are<br>Federally owned lands within the Bighorn National Forest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7. The carrying capacity of the ditch. canal. pipeline or other facility at tho 角別机马口尼岛的 is (See Remarks) feet per second.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8. The accompanying map is prepared in accordance with the State Engineer's Manual of Regulations and Instructions for filing applications and is hereby declared a part of this application. The State Engineer may require the filing of detailed construction plans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9. The estimated time required for commencement of work is30 days, for completion of construction is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <u>30 days</u> , and to complete the application of water to the beneficial uses stated in this application is<br><u>30 days</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Permit No.

|       |       |       | r    |       |      |      |       |      |          |       | r    |          |      |      |      |       |       |       |        |
|-------|-------|-------|------|-------|------|------|-------|------|----------|-------|------|----------|------|------|------|-------|-------|-------|--------|
| Town- |       |       | NE¼  |       |      | NW14 |       |      | SW1/4    |       |      | SE1/4    |      |      |      |       |       |       |        |
| ship  | Range | Sec.  | NE¼  | NW1/4 | SW14 | SE14 | NE1/4 | NW14 | SW1/4    | SE1/4 | NE14 | NW14     | SW14 | SE14 | NE¼  | NW1/4 | SW1/4 | SE1/4 | TOTALS |
| _58_  | 89    | 20    |      |       |      |      |       |      |          |       |      |          | X    |      |      |       |       |       |        |
| 58    | 89    | 19    |      |       |      |      |       |      |          |       |      |          |      |      |      |       |       | Lgt   |        |
| _58   | 89    | 30    | X    | X     |      |      | X     |      | Lot<br>2 | X     |      | Lot<br>3 |      |      |      |       |       |       |        |
| _58   | 90    | 25    |      |       |      |      |       |      |          |       |      |          |      |      |      |       |       | X     |        |
| 58    | 90    | 36    | X    |       | X    | X    |       |      |          |       |      |          |      | X    |      | X     | X     |       |        |
| 57    | 90    | 1     |      |       |      |      | x     | X    |          | X     | X    |          |      | X    |      |       |       |       |        |
| 57    | 90    | 12    |      |       |      |      | х     |      |          |       |      |          |      |      |      |       |       |       |        |
|       |       |       |      |       |      |      |       |      |          |       |      |          |      |      |      |       |       |       |        |
|       |       |       |      |       |      |      |       |      |          |       |      |          |      |      |      |       |       |       |        |
|       | The   | leng  | th d | of t  | he s | tre  | am s  | egm  | ent      | is    | 4.40 | mil      | les. |      |      |       |       |       |        |
|       |       |       |      |       |      |      |       |      |          |       |      |          |      |      |      |       |       |       |        |
|       | Loc   | ation | of   | ins   | trea | m f  | low   | con  | trol     | ga    | ge i | s no     | ət i | den  | cifi | ed.   | If    | on    | e      |
|       | is    | neede | d, a | a ga  | ge v | i11  | be    | ins  | tall     | ed    | near | the      | ₽ No | rth  | bou  | indai | уо    | ft    | ne     |
|       | SWł   | SWĮ o | f S  | ecti  | on 2 | 0,   | r. :  | 58 N | ., I     | . 8   | 9 W. |          |      |      |      |       |       |       |        |
|       |       |       |      |       |      |      |       |      |          |       |      |          |      |      |      |       |       |       |        |
|       |       |       |      |       |      |      |       |      |          |       |      |          |      |      |      |       |       |       |        |
|       |       |       |      |       |      |      |       | 1    |          |       |      |          |      |      |      |       |       |       |        |
|       |       |       |      |       |      |      |       |      |          |       |      |          |      |      |      |       |       |       |        |
|       |       |       |      |       |      |      |       |      |          |       |      |          |      |      |      |       |       |       |        |
|       |       |       |      |       |      |      |       |      |          |       |      |          |      |      |      |       |       |       |        |

10. The land to be irrigated under this permit is described in the following tabulation: (Give irrigable acreage in each 40-acre subdivision. Designate ownership of land, federal, State or private. If private, list names of owners and land owned separately.) If application is for stock, domestic, or for purposes other than irrigation, indicate point of use by 40-acre subdivision and owner.

Number of acres to receive original supply

Number of acres to receive supplemental supply.

Total Number of acres to be irrigated

### REMARKS

| MONTHLY   | Y INSTREAM | KEMAKK5                                                     |
|-----------|------------|-------------------------------------------------------------|
| FLOW      | REQUESTED  |                                                             |
|           |            |                                                             |
| MONTH     | FLOW (cfs) | Based on the results of a study conducted in 1988 by the    |
| October   | 60         | Wyoming Game and Fish Department (attached), a flow right   |
| November  | 1-15 60    | of 60 cfs is requested from October 1 to November 15 to     |
| Nov. 16 - | 30 50      | maintain Hydraulic conditions for existing levels of trout  |
| December  | 50         | survival and to maintain existing levels of brown trout     |
| January   | 50         | spawning.                                                   |
| February  | 50         | A flow of 50 cfs is requested from November 16 to March     |
| March     | 50         | 31 to maintain existing levels of brown trout incubation.   |
| April     | 60         | A flow of 60 cfs is requested from April 9 to June 30 to    |
| May       | 60         | maintain existing levels of rainbow trout spawning and      |
| June      | 60         | incubation. A flow of 62 cfs is requested from July 1       |
| _July     | .62        | to September 30 to maintain the existing level of           |
| August    | 62         | adult trout production.                                     |
| September | 62         |                                                             |
|           |            | Intervening ditches - Little Bighorn - East Twin Creek      |
|           |            | pipeline, Permit No. 23955, Priority Date 8/25/1972, supply |
|           |            | pipeline for Parkman Reservoir for 150 cfs.                 |
|           |            |                                                             |
|           |            |                                                             |

Under penalties of perjury. I declare that I have examined this application and to the best of my knowledge and belief it is true, correct and complete.

Muchart unille Signature of Applicant or Agent

6/87 Dat 5



I Jon S. Ogden of Cheyenne, Wyoming do hereby certify that this map was made from U.S. Geological Survey Maps (7.5 min. series) dated 1964; Bull Elk Park, Wyoming; West Pass, Wyoming and from U.S. Department of the Interior General Land Office Plat of T. 58 N., R. 89 W. dated May 12,1903 the Plats of Fractional T. 58 N., R. 89 W. dated May 7, 1903 and April 1, 1913 and the undated Plat of T. 56-58 N., R. 90-93 W. Protracted (Unsurveyed) and that it correctly represents the Little Bighorn River and the land through which it flows to the best of my knowledge and belief. Jon & Ogden 11/29/89 Computer Generated, Corrected, and Redrawn 10-24-89